FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  
may be particularly convenient.[9] [Footnote 9: Professor Soddy, in a paper read before the Royal Society on the 15th November 1906, warns experimenters against vacua created by charcoal cooled in liquid air (the method referred-to in the text), unless as much of the air as possible is first removed with a pump and replaced by some argon-free gas. According to him, neither helium nor argon is absorbed by charcoal. By the use of electrically-heated calcium, he claims to have produced an almost perfect vacuum.--ED.] Thanks to these studies, a considerable field has been opened up for biological research, but in this, which is not our subject, I shall notice one point only. It has been proved that vital germs--bacteria, for example--may be kept for seven days at -190 deg.C. without their vitality being modified. Phosphorescent organisms cease, it is true, to shine at the temperature of liquid air, but this fact is simply due to the oxidations and other chemical reactions which keep up the phosphorescence being then suspended, for phosphorescent activity reappears so soon as the temperature is again sufficiently raised. An important conclusion has been drawn from these experiments which affects cosmogonical theories: since the cold of space could not kill the germs of life, it is in no way absurd to suppose that, under proper conditions, a germ may be transmitted from one planet to another. Among the discoveries made with the new processes, the one which most strikingly interested public attention is that of new gases in the atmosphere. We know how Sir William Ramsay and Dr. Travers first observed by means of the spectroscope the characteristics of the _companions_ of argon in the least volatile part of the atmosphere. Sir James Dewar on the one hand, and Sir William Ramsay on the other, subsequently separated in addition to argon and helium, crypton, xenon, and neon. The process employed consists essentially in first solidifying the least volatile part of the air and then causing it to evaporate with extreme slowness. A tube with electrodes enables the spectrum of the gas in process of distillation to be observed. In this manner, the spectra of the various gases may be seen following one another in the inverse order of their volatility. All these gases are monoatomic, like mercury; that is to say, they are in the most simple state, they possess no internal molecular energy (unless it is that which heat is capable o
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  



Top keywords:
observed
 
atmosphere
 
process
 
helium
 

temperature

 

charcoal

 

William

 

Ramsay

 

volatile

 

liquid


attention

 

planet

 

absurd

 

affects

 

experiments

 

cosmogonical

 

theories

 
suppose
 
discoveries
 

processes


strikingly

 

interested

 
Travers
 

proper

 

conditions

 

transmitted

 
public
 

inverse

 

volatility

 
distillation

manner

 
spectra
 

monoatomic

 

energy

 
molecular
 

capable

 

internal

 

possess

 

mercury

 

simple


spectrum

 
enables
 
separated
 

subsequently

 

addition

 

crypton

 

spectroscope

 

characteristics

 

companions

 
slowness