FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  
her rare cases in which similar hypotheses have had to be set up, experiment has always in the long run enabled us to discover some phenomenon which had escaped the first observers and which corresponds exactly to the variation of energy first made evident. One difficulty, however, arises from the fact that the principle ought only to be applied to an isolated system. Whether we imagine actions at a distance or believe in intermediate media, we must always recognise that there exist no bodies in the world incapable of acting on each other, and we can never affirm that some modification in the energy of a given place may not have its echo in some unknown spot afar off. This difficulty may sometimes render the value of the principle rather illusory. Similarly, it behoves us not to receive without a certain distrust the extension by certain philosophers to the whole Universe, of a property demonstrated for those restricted systems which observation can alone reach. We know nothing of the Universe as a whole, and every generalization of this kind outruns in a singular fashion the limit of experiment. Even reduced to the most modest proportions, the principle of the conservation of energy retains, nevertheless, a paramount importance; and it still preserves, if you will, a high philosophical value. M.J. Perrin justly points out that it gives us a form under which we are experimentally able to grasp causality, and that it teaches us that a result has to be purchased at the cost of a determined effort. We can, in fact, with M. Perrin and M. Langevin, represent this in a way which puts this characteristic in evidence by enunciating it as follows: "If at the cost of a change C we can obtain a change K, there will never be acquired at the same cost, whatever the mechanism employed, first the change K and in addition some other change, unless this latter be one that is otherwise known to cost nothing to produce or to destroy." If, for instance, the fall of a weight can be accompanied, without anything else being produced, by another transformation--the melting of a certain mass of ice, for example--it will be impossible, no matter how you set about it or whatever the mechanism used, to associate this same transformation with the melting of another weight of ice. We can thus, in the transformation in question, obtain an appropriate number which will sum up that which may be expected from the external effect, and can give
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  



Top keywords:

change

 

energy

 
transformation
 

principle

 

weight

 
mechanism
 

Universe

 

Perrin

 

obtain

 

melting


difficulty
 

experiment

 
causality
 

teaches

 

experimentally

 

preserves

 

question

 
number
 

purchased

 

result


importance

 
external
 

expected

 

points

 

philosophical

 
determined
 

effect

 
justly
 
represent
 

produced


paramount
 

employed

 

addition

 

instance

 

produce

 

destroy

 
acquired
 

characteristic

 

accompanied

 

associate


Langevin

 

evidence

 

enunciating

 
matter
 
impossible
 

effort

 

restricted

 

actions

 

distance

 

intermediate