FREE BOOKS

Author's List




PREV.   NEXT  
|<   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323  
324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   >>   >|  
edgers, and especially of suction dredgers in sand (see DREDGE), together with the increasing draught of vessels, has resulted in a considerable increase being made in the available depth of rivers and channels leading to docks, and has necessitated the making of due allowance for the possibility of a reasonable improvement in determining the depth to be given to a new dock. On the other hand, there is a limit to the deepening of an approach channel, depending upon its length, the local conditions as regards silting, and the resources and prospects of trade of the port, for every addition to the depth generally involves a corresponding increase in the cost of maintenance. [Illustration: FIG. 6.--Dunkirk Docks and Jetty Channel.] At tidal ports the available depth for vessels should be reckoned from high water of the lowest neap tides, as the standard which is certain to be reached at high tide; and the period during which docks can be entered at each tide depends upon the nature of the approach channel, the extent of the tidal range and the manner in which the entrance to the docks is effected. Thus where the tidal range is very large, as in the Severn estuary, the approach channels to some of the South Wales ports are nearly dry at low water of spring tides, and it would be impossible to make these ports accessible near low tide; whereas at high water, even of neap tides, vessels of large draught can enter their docks. At Liverpool, with a rise of 31 ft. at equinoctial spring tides, owing to the deep channel between Liverpool and Birkenhead and into the outer estuary of the Mersey in Liverpool Bay, maintained by the powerful tidal scour resulting from the filling and emptying of the large inner estuary, access to the river by the largest vessels has been rendered possible, at any state of the tide, by dredging a channel through the Mersey bar; but the docks cannot be entered till the water has risen above half-tide level, and the gates are closed directly after high water. A large floating landing-stage, however, about half a mile in length, in front of the centre of the docks, connected with the shore by several hinged bridges and rising and falling with the tide, enables Atlantic liners to come alongside and take on board or disembark their passengers at any time. [Illustration: FIG. 7.--Tilbury Docks.] Comparatively small tidal rivers offer the best opportunity of a considerable improvement in the approach ch
PREV.   NEXT  
|<   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323  
324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   >>   >|  



Top keywords:

vessels

 

approach

 

channel

 

estuary

 
Liverpool
 

length

 

Illustration

 

entered

 
spring
 

Mersey


rivers
 
increase
 

considerable

 

draught

 

improvement

 

channels

 

rendered

 

largest

 

emptying

 

access


dredging
 

opportunity

 

filling

 

equinoctial

 

Birkenhead

 

powerful

 
resulting
 
suction
 

maintained

 
dredgers

enables

 

Atlantic

 
liners
 

falling

 

rising

 
hinged
 
bridges
 

alongside

 

passengers

 

disembark


connected

 

closed

 

directly

 
edgers
 

floating

 
centre
 

Comparatively

 

landing

 

Tilbury

 
maintenance