FREE BOOKS

Author's List




PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  
relatively small proportions and any one may, therefore, be the limiting factor in plant growth so far as plant food is concerned. These are nitrogen, phosphorus, potassium, and (possibly) sulfur. ROLE OF PLANT FOOD ELEMENTS IN PLANT GROWTH The use which a plant makes of the elements which come to it from the soil has been studied with great persistency and care by many plant physiologists and chemists. Many of the reactions which take place in a plant cell are extremely complicated, and the relation of the different chemical elements to these is not easily ascertained. It is probable that the same element may play a somewhat different role in different species of plants, in different organs of the same plant, or at different stages of the plant's development. But the usual and most important offices of each element are now fairly well understood, and are briefly summarized in the following paragraphs. It should be understood that a thorough and detailed discussion of these matters, such as would be included in an advanced study of plant nutrition, would reveal other functions than those which are presented here and would require a more careful and more exact method of statement than is suitable here. However, the general principles of the utilization of soil elements by plants for their nutrition and growth may be fairly well understood from the following statements. =Nitrogen= is a constituent of all proteins (see Chapter XIII). Proteins are apparently the active chemical components of protoplasm. Since it is in the protoplasm of the green portions, usually foliage, of plants that the photosynthesis of carbohydrates and the synthesis of most, or all, of the other tissue-building materials and reserve food substances of the plant takes place, the importance of nitrogen as a plant food can hardly be over-emphasized. Nitrogen starvation produces marked changes in the growth of a plant. Leaves are stunted in growth and a marked yellowing of the entire foliage takes place; in fact, the whole plant takes on a stunted or starved appearance. Abundance of nitrogen, on the other hand, produces a rank growth of foliage of a deep rich color and a luxuriant development of tissue, and retards the ripening process. In the early stages of growth, the nitrogen is present most largely in the leaves; but when the seeds develop, rapid translocation of protein material into the seeds takes place, until finally a larg
PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  



Top keywords:

growth

 

nitrogen

 

foliage

 

elements

 

understood

 
plants
 

tissue

 

stunted

 

fairly

 

marked


development
 

stages

 

chemical

 

produces

 

element

 

protoplasm

 

nutrition

 
Nitrogen
 

synthesis

 

statement


principles

 

utilization

 

photosynthesis

 

carbohydrates

 

general

 

suitable

 
However
 
active
 

components

 
Chapter

Proteins

 

apparently

 

proteins

 
portions
 

statements

 

constituent

 

luxuriant

 

retards

 
ripening
 

material


process

 

translocation

 

develop

 

protein

 

leaves

 

present

 
largely
 
Abundance
 

finally

 

importance