FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
it passes through a solution of the carbohydrate in question. The amount of the rotation depends upon the nature of the carbohydrate, the concentration of the solution, and the length of the column of solution through which the ray of polarized light passes. But the same definite amount of the same sugar, dissolved in the same volume of water, and placed in a tube of the same length, will always cause the same angular deviation, or rotation, of the plane in which the polarized light which passes through it is vibrated. In other words, the same number of molecules of the optically active substance in solution will always produce the same rotatory effect. This is called the specific rotatory power of the substance in question. It is expressed as the number of degrees of angular deviation of the plane of polarized light caused by a column of the solution exactly 200 mm. in length, the concentration of the solution being 100 grams of substance in 100 cc. at a temperature of 20 deg. C. Actual determinations of specific rotatory power are usually made with solutions more dilute than this standard, and the observed deviation multiplied by the proper factor to determine the effect which would be produced by the solution of standard concentration. If the direction of the deviation is to the right (i.e., in the direction in which the hands of the clock move) it is spoken of as "dextro" rotation and is indicated by the sign +, or the letter _d_; while if in the opposite direction, it is called "levo" rotation and indicated by the sign -, or the letter _l_. For example, the specific rotation of ordinary glucose is +52.7 deg.; of fructose, -92 deg.; of sucrose, +66.5 deg. =Reducing Action.=--All of the hexose sugars are active reducing agents. This is because of the aldehyde group which they contain. Many of the common heavy metals, when in alkaline solutions, are strongly reduced when boiled with solutions of the hexose sugars. Alkaline copper solutions yield a precipitate of red cuprous oxide; ammoniacal silver solutions give silver mirrors; alkaline solutions of mercury salts are reduced to metallic mercury, etc. Any sugar which contains a potentially active aldehyde group will exhibit this reducing effect and is known as a "reducing sugar." In some of the di- and tri-saccharides, the linkage of the hexose components together is through the aldehyde group, in such a way that it loses its reducing effect; such sugars are known as
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:

solution

 

solutions

 

rotation

 

deviation

 

effect

 

reducing

 

substance

 

specific

 

active

 

length


aldehyde
 

sugars

 

direction

 
passes
 

hexose

 

concentration

 

rotatory

 

polarized

 
called
 

reduced


letter

 

mercury

 
standard
 

silver

 

alkaline

 
amount
 

angular

 

carbohydrate

 

question

 

number


column
 

agents

 
fructose
 
glucose
 

ordinary

 

Reducing

 

Action

 

sucrose

 

exhibit

 

ammoniacal


cuprous
 

mirrors

 

potentially

 

precipitate

 
metals
 

saccharides

 

metallic

 

common

 

linkage

 
Alkaline