FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
ic adaptations; morphological adaptations; accommodations; concluding statements 249-258 INDEX 259-268 INTRODUCTION The history of biological science shows that the conceptions which men have held concerning the nature of plant and animal growth have undergone a series of revolutionary changes as the technique of, and facilities for, scientific study have developed and improved. For a long time, it was thought that life processes were essentially different in character than those which take place in inanimate matter, and that the physical sciences had nothing to do with living changes. Then, too, earlier students had only vague notions of the actual structure of a living organism. Beginning with the earliest idea that a plant or an animal exists as a unit organism, to be studied as such, biological science progressed, first to the recognition and study of the individual organs which are contained within the organism; then to the tissues which make up these organs; then (with the coming into use of the microscope as an aid to these investigations) to the cells of which the tissues are composed; then to the protoplasm which constitutes the cell contents; and finally to the doctrine of organic evolution as the explanation of the genealogy of plants and animals, and the study of the relation of the principles of the physical sciences to the evolutionary process. The ultimate material into which organisms are resolved by this process of biological analysis is the cell protoplasm. But protoplasm is itself made up of a complex system of definite chemical compounds, which react and interact according to the laws of physical science. Hence, any study of the chemistry of plant growth is essentially a study of the chemical and physical changes which take place in the cell protoplasm. Protoplasm differs from non-living matter in three respects. These are (1) its chemical composition; (2) its power of waste and repair and of growth; and (3) its reproductive power. From the standpoint of chemical composition, protoplasm is the most complex material in the universe. It not only contains a greater variety of chemical elements, united into molecules of enormous size and complexity, but also a greater variety of definite chemical compounds than exist in any other known mixture, either m
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:

chemical

 

protoplasm

 

physical

 

living

 

organism

 
growth
 

biological

 

science

 

composition

 

variety


sciences
 

matter

 

complex

 

essentially

 

material

 

animal

 

compounds

 
greater
 

tissues

 

definite


process

 

adaptations

 

organs

 

system

 

doctrine

 

evolution

 
finally
 
organic
 

ultimate

 
organisms

animals

 

evolutionary

 

relation

 
principles
 

resolved

 

explanation

 

genealogy

 

plants

 
analysis
 

differs


elements

 

united

 

molecules

 

enormous

 

universe

 

complexity

 
mixture
 
standpoint
 

Protoplasm

 

contents