FREE BOOKS

Author's List




PREV.   NEXT  
|<   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356  
357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   >>   >|  
g used in buildings of first importance, the aggregate being very carefully selected, and in many cases the whole mixture coloured by the use of pigments. Care must be taken in their selection, however, as certain colouring matters such as red lead are destructive to the cement. One of the great objections to the appearance of concrete is the fact that soon after its erection irregular cracks invariably appear on its surface. These cracks are probably due to shrinkage while setting, aggravated by changes in temperature. They occur no less in structures of masonry and brickwork, but in these cases they generally follow the joints, and are almost imperceptible. In the case of a smooth concrete face there are no joints to follow, and the cracks become an ugly feature. They are sometimes regulated by forming artificial "joints" in the structure by embedding strips of wood or sheet iron at regular intervals, thus forming "lines of weakness," at which the cracks therefore take place. A pleasing "rough" appearance can be given to concrete by brushing it over soon after it has set with a stiff brush dipped in water or dilute acid. Or, if hard, its surface can be picked all over with a bush hammer. Resistance to fire. At one time Portland cement concrete was considered to be lacking in fireproof qualities, but now it is regarded as one of the best fire-resisting materials known. Although experiments on this matter are badly needed, there is little doubt that good steel concrete is very nearly indestructible by fire. The matrix should be Portland cement, and the nature of the aggregate is important. Cinders have been and are still much favoured for this purpose. The reason for this preference lies in the fact that being porous and full of air, they are a good non-conductor. But they are weak, and modern experience goes to show that a strong concrete is the best, and that probably materials like broken clamp bricks or burnt clay, which are porous and yet strong, are far better than cinders as a fireproof aggregate. Limestone should be avoided, as it soon splits under heat. The steel reinforcement is of immense importance in fireproof work, because, if properly designed, it enables the concrete to hold together and do its work even when it has been cracked by fire and water. On the other hand, the concrete, being a non-conductor, preserves the steel from being softened and twisted by excessive temperature. Cost. On
PREV.   NEXT  
|<   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356  
357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   >>   >|  



Top keywords:
concrete
 

cracks

 

joints

 

cement

 

fireproof

 

aggregate

 

strong

 

temperature

 
forming
 

porous


conductor

 

follow

 

surface

 

appearance

 
Portland
 

materials

 

importance

 

Although

 

experiments

 

considered


Cinders

 

important

 
matrix
 

favoured

 

indestructible

 
qualities
 

resisting

 

lacking

 

nature

 
needed

regarded

 
matter
 
designed
 

enables

 
properly
 

reinforcement

 

immense

 
softened
 

twisted

 

excessive


preserves

 
cracked
 

splits

 

avoided

 

modern

 

experience

 
reason
 
preference
 
broken
 

cinders