FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
lem of distribution, of which the partition of a number is a particular case. He introduced the method of symmetric functions and the method of differential operators, applying both methods to the two important subdivisions, the theory of composition and the theory of partition. He introduced the notion of the separation of a partition, and extended all the results so as to include multipartite as well as unipartite numbers. He showed how to introduce zero and negative numbers, unipartite and multipartite, into the general theory; he extended Sylvester's graphical method to three dimensions; and finally, 1898, he invented the "Partition Analysis" and applied it to the solution of novel questions in arithmetic and algebra. An important paper by G. B. Mathews, which reduces the problem of compound partition to that of simple partition, should also be noticed. This is the problem which was known to Euler and his contemporaries as "The Problem of the Virgins," or "the Rule of Ceres"; it is only now, nearly 200 years later, that it has been solved. Fundamental problem. The most important problem of combinatorial analysis is connected with the distribution of objects into classes. A number n may be regarded as enumerating n similar objects; it is then said to be unipartite. On the other hand, if the objects be not all similar they cannot be effectively enumerated by a single integer; we require a succession of integers. If the objects be p in number of one kind, q of a second kind, r of a third, &c., the enumeration is given by the succession pqr... which is termed a multipartite number, and written, ______ pqr..., where p + q + r + ... = n. If the order of magnitude of the numbers p, q, r, ... is immaterial, it is usual to write them in descending order of magnitude, and the succession may then be termed a partition of the number n, and is written (pqr...). The succession of integers thus has a twofold signification: (i.) as a multipartite number it may enumerate objects of different kinds; (ii.) it may be viewed as a partitionment into separate parts of a unipartite number. We may say either that the objects are represented by the multipartite number ______ pqr..., or that they are defined by the partition (pqr...) of the unipartite number n. Similarly the classes into which they are distributed may be m in number all similar; or they may be p1 of one kind, q1 of a second, r1 of a third, &c., wher
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

number

 

partition

 
objects
 

unipartite

 

multipartite

 

succession

 

problem

 

numbers

 

important

 

theory


method
 
similar
 
integers
 

distribution

 

termed

 

magnitude

 
introduced
 

written

 

extended

 

classes


enumerating
 

regarded

 

integer

 

single

 

enumerated

 

effectively

 

require

 

represented

 

partitionment

 

separate


defined
 

Similarly

 

distributed

 

viewed

 

connected

 

immaterial

 

descending

 

enumerate

 

twofold

 

signification


enumeration
 

Problem

 

general

 

Sylvester

 

negative

 
showed
 

introduce

 

graphical

 

Partition

 

Analysis