FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
bviously dissected into a square, containing say [theta]^2 nodes, and into two graphs, one lateral and one subjacent, the latter being the conjugate of the former. The former graph is limited to contain not more than [theta] parts, but is subject to no other condition. Hence the number of self-conjugate partitions of n which are associated with a square of [theta]^2 nodes is clearly equal to the number of partitions of 1/2(n = [theta]^2) into [theta] or few parts, i.e. it is the coefficient of x^{1/2(n-[theta]^2)} in 1 -------------------------------------------, 1 - x. 1 - x^2. 1 - x^3. ... 1 - x^[theta]. x^[theta]^2 or of x^n in ---------------------------------------------. 1 - x^2. 1 - x^4. 1 - x^6. ... 1 - x^2[theta] and the whole generating function is [theta]=[oo] x^[theta]^2 1 + [Sigma] ---------------------------------------------. [theta]=1 1 - x^2. 1 - x^4. 1 - x^6. ... 1 - x^2[theta] Now the graph is also composed of [theta] angles of nodes, each angle containing an uneven number of nodes; hence the partition is transformable into one containing [theta] unequal uneven numbers. In the case depicted this partition is (17, 9, 5, 1). Hence the number of the partitions based upon a square of [theta]^2 nodes is the coefficient of a^[theta].x^n in the product (1 + ax)(1 + ax^3)(1 + ax^5)...(1 + ax^{2s-1}), and thence the coefficient of a^[theta] in this product is x^[theta]^2 ---------------------------------------------, and we have the expansion 1 - x^2. 1 - x^4. 1 - x^6. ... 1 - x^2[theta] (1 + ax)(1 + ax^3)(1 + ax^5)...ad inf. x x^4 x^9 = 1 + ------- a + ---------------- a^2 + ----------------------- a^3 + ... 1 - x^2 1 - x^2. 1 - x^4 1 - x^2. 1 - x^4. - x^6 Again, if we restrict the part magnitude to i, the largest angle of nodes contains at most 2i - 1 nodes, and based upon a square of [theta]^2 nodes we have partitions enumerated by the coefficient of a^[theta].x^n in the product (1 + ax)(1 + ax^3)(1 + ax^5)...(1 + ax^{2i-1}); moreover the same number enumerates the partition of 1/2(n - [theta]^2) into [theta] or fewer parts, of which the largest part is equal to or less than i -[theta], and is thus given by the coefficient of x^{1/2(n-[theta]^2)} in the expansion of 1 - x^{i-[t]+1}. 1 - x^{i-[t]
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

number

 

coefficient

 
partitions
 

square

 

partition

 

product


expansion

 

largest

 

conjugate

 

uneven

 
numbers
 
depicted

bviously
 

enumerated

 

enumerates

 

unequal

 
restrict
 

magnitude


subject

 

condition

 
limited
 

graphs

 

subjacent

 

lateral


composed

 

angles

 

function

 

generating

 

dissected

 

transformable