FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
relation (X1, X2, X3, ... Xn) = (a11 a12 ... a1n)(x1, x2, ... xn) |a21 a22 ... a2n| | . . ... . | | . . ... . | |an1 an2 ... ann| that portion of the algebraic fraction, 1 ---------------------------------, (1 - s1X1)(1 - s2X2)...(1 - snXn) which is a function of the products s1x1, s2x2, s3x3, ... snxn only is 1 -------------------------------------------------------- |(1 - a11s1x1)(1 - a22s2x2)(1 - a33s3x3)(1 - ann.sn.xn)| where the denominator is in a symbolic form and denotes on expansion 1 - [Sigma]|a11|s1x1 + [Sigma]|a11a22|s1s2x1x2 - ... + (-)^n|a11a22a33...ann|s1s2 ... sn.x1x2...xn, where |a11|, |a11a22|, ... |a11a22,...ann| denote the several co-axial minors of the determinant |a11a22...ann| of the matrix. (For the proof of this theorem see MacMahon, "A certain Class of Generating Functions in the Theory of Numbers," _Phil. Trans. R. S._ vol. clxxxv. A, 1894). It follows that the coefficient of x1^[xi]1 x2^[xi]2 ... xn^[xi]n in the product (a11x1 + a12x2 + ... + a1n.xn )^[xi]^1 (a21x1 + a22x2 + ... + + a2n.xn)^[xi]^2...(an1x1 + an2x2 + ... + ann.xn)^[xi]n is equal to the coefficient of the same term in the expansion ascending-wise of the fraction 1 --------------------------------------------------------------------------. 1 - [Sigma]|a11|x1 + [Sigma]|a11a22|x1x2 - ... + (-)^n|a11a22...|x1x2...xn If the elements of the determinant be all of them equal to unity, we obtain the functions which enumerate the unrestricted permutations of the letters in x1^[xi]1 x2^[xi]2 ... xn^[xi]n, viz. (x1 + x2 + ... - xn)^{[xi]1 + [xi]2 + ... + [xi]n} 1 and ------------------------. 1 - (x1 + x2 + ... + xn) Suppose that we wish to find the generating function for the enumeration of those permutations of the letters in x1^[xi]1 x2^[xi]2...x3^[xi]n which are such that no letter xs is in a position originally occupied by an x3 for all values of s. This is a generalization of the "Probleme des rencontres" or of "derangements." We have merely to put a11 = a22 = a33 = ... = ann = 0 and the remaining elements equal to unity. The generating product is (x2 + x3 + ... + xn)^[xi]1 (x1 + x3 + ... + xn)^[xi]2 ... (x1 + x2 + ..
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

a11a22

 

generating

 
product
 

permutations

 

expansion

 

letters

 

determinant

 

function

 

coefficient

 

fraction


elements
 
Suppose
 
functions
 

obtain

 

enumerate

 

unrestricted

 
ascending
 

letter

 

derangements

 

rencontres


generalization
 

Probleme

 

remaining

 

enumeration

 

position

 

values

 

occupied

 

originally

 

Functions

 

a11s1x1


a22s2x2
 

a33s3x3

 

denominator

 

s1s2x1x2

 

denotes

 

symbolic

 

products

 

relation

 

algebraic

 

portion


a11a22a33
 

Numbers

 

Theory

 

clxxxv

 

Generating

 
minors
 

matrix

 

denote

 

MacMahon

 

theorem