FREE BOOKS

Author's List




PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  
ha]_s has the expression 1 1/2 . -----------------------------------------------------------------------------------------------------------------, 1 - 2([Sigma]t1[a]1 - [Sigma]t1t2[a]1[a]2 + [Sigma]t1t2[a]1[a]2[a]3 - ... + (-)^(s+1) t1t2...t_s[a]1[a]2...[a]_s) and therefore the coefficient of [alpha]1^p1 [alpha]2^p2...[alpha]s^ps in the latter fraction, when t1, t2, &c., are put equal to unity, is equal to the coefficient of the same term in the product 1/2 (2[a]1 + [a]2 + ... + [a]s)^p1 (2[a]1 + 2[a]2 + ... +[a]s)^p2 ... (2[a]1 + 2[a]2 + ... + 2[a]s)^ps. This result gives a direct connexion between the number of compositions and the permutations of the letters in the product [alpha]1^p1 [alpha]2^p2...[alpha]s^ps. Selecting any permutation, suppose that the letter a_r occurs q_r times in the last p_r + p_(r+1) + ... + p_s places of the permutation; the coefficient in question may be represented by 1/2[Sigma] 2^(q1+q2+...+qs), the summation being for every permutation, and since q1 = p1 this may be written 2p1^(-1)[Sigma] 2^(q2+q3+...+qs). _Ex. Gr._--For the bipartite /22, p1 = p2 = 2, and we have the following scheme:-- [a]1 [a]1 | [a]2 [a]2 q2 = 2 [a]1 [a]2 | [a]1 [a]2 = 1 [a]1 [a]2 | [a]2 [a]1 = 1 [a]2 [a]1 | [a]1 [a]2 = 1 [a]2 [a]1 | [a]2 [a]1 = 1 [a]2 [a]2 | [a]1 [a]1 = 0 Hence F(22) = 2(2^2 + 2 + 2 + 2 + 2 + 2^0) = 26. We may regard the fraction 1 -------------------------------------------------------------------------------------------------------------------, 1/2 . {1 - t1(2[a]1 + [a]2 + ... + [a]s)} {1 - t2(2[a]1 + 2[a]2 + ... + [a]s)} ... {1 - t_s(2[a]1 + 2[a]2 + ... + 2[a]s)} as a redundant generating function, the enumeration of the compositions being given by the coefficient of (t1[alpha]1)^p1 (t2[alpha]2)^p2 ... (t_s[alpha]_s )^ps. The transformation of the pure generating function into a factorized redundant form supplies the key to the solution of a large number of questions in the theory of ordinary permutations, as will be seen later. The theory of permutations. [The transformation of the last section involves a comprehensive theory of Permutations, which it is convenient to discuss shortly here. If X1, X2, X3, ... Xn be linear functions given by the matricular
PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  



Top keywords:

coefficient

 

theory

 
permutation
 

permutations

 

compositions

 

number

 

transformation

 

function

 

generating


redundant

 
product
 
fraction
 
supplies
 

ordinary

 

questions

 

factorized

 
solution
 

regard


enumeration

 

expression

 
matricular
 

functions

 

linear

 

shortly

 

discuss

 

involves

 

section


comprehensive

 

Permutations

 

convenient

 
places
 

question

 

represented

 

occurs

 

result

 

Selecting


letters

 

direct

 

connexion

 

letter

 
suppose
 

summation

 

bipartite

 

scheme

 

written