FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
h_(q1)h_(r1) ... is equal to the coefficient of symmetric function (p1q1r1 ...) in the development of the product h_p.h_q.h_r...." The problem of Case I. may be considered when the distributions are subject to various restrictions. If the restriction be to the effect that an aggregate of similar parcels is not to contain more than one object of a kind, we have clearly to deal with the elementary symmetric functions a1, a2, a3, ... or (1), (1^2), (1^3), ... in lieu of the quantities h1, h2, h3, ... The distribution function has then the value a_(p1)a_(q1)a_(r1)... or (1^p1) (1^q1) (1^r1) ..., and by interchange of object and parcel we arrive at the well-known theorem of symmetry in symmetric functions, which states that the coefficient of symmetric function (pqr ...) in the development of the product ap1aq1ar1 ... in a series of monomial symmetric functions, is equal to the coefficient of the function (p1q1r1 ...) in the similar development of the product a_p.a_q.a_r.... The general result of Case I. may be further analysed with important consequences. Write X1 = (1)x1, X2 = (2)x2 + (1^2)x1^2, X3 = (3)x3 + (21)x2x1 + (1^3){x1}^3 . . . . . and generally X_s = [Sigma]([lambda][mu][nu] ...)x_[lambda]x_[mu]x_[nu] ... the summation being in regard to every partition of s. Consider the result of the multiplication-- X_p1 X_q1 X_r1 ... = [Sigma]P(x_s1)^[sigma]1 (x_s2)^[sigma]2 (x_s3)^[sigma]3 ... To determine the nature of the symmetric function P a few definitions are necessary. _Definition I._--Of a number n take any partition ([lambda]1[lambda]2[lambda]3 ... [lambda]s) and separate it into component partitions thus:-- ([lambda]1[lambda]2) ([lambda]3[lambda]4[lambda]5) ([lambda]6) ... in any manner. This may be termed a _separation_ of the partition, the numbers occurring in the separation being identical with those which occur in the partition. In the theory of symmetric functions the separation denotes the product of symmetric functions-- [Sigma] [alpha]^[lambda]1 [beta]^[lambda]2 [Sigma][alpha]^[lambda]3 [beta]^[lambda]4 [gamma]^[lambda]5 [Sigma][alpha]^[lambda]6 ... The portions ([lambda]1[lambda]2), ([lambda]3[lambda]4[lambda]5), ([lambda]6)... are termed _separates_, and if [lambda]1 + [lambda]2 = p1, [lambda]3 + [lambda]4 + [lambda]5 = q1, [lambda]6 = r1... be in descending order of magnitude,
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:

lambda

 

symmetric

 
functions
 

function

 

product

 

partition

 

separation

 

coefficient

 

development

 

termed


object
 
p1q1r1
 
result
 

similar

 

nature

 

determine

 
definitions
 

multiplication

 

Consider

 

summation


regard
 

manner

 

theory

 

denotes

 

identical

 

portions

 

magnitude

 

descending

 

separates

 

occurring


numbers
 

separate

 

number

 

generally

 

partitions

 

component

 

Definition

 

symmetry

 

elementary

 

quantities


subject
 

distributions

 

problem

 

considered

 

restrictions

 
parcels
 

aggregate

 

restriction

 

effect

 

distribution