FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  
e marls, which are found in connexion with chalk or limestone formations only. These ordinary brick clays vary considerably in composition, and many clays, as they are found in nature, are unsuitable for brickmaking without the addition of some other kind of clay or sand. The strongest brick clays, _i.e._ those possessing the greatest plasticity and tensile strength, are usually those which contain the highest percentage of the hydrated aluminium silicates, although the exact relation of plasticity to chemical composition has not yet been determined. This statement cannot be applied indiscriminately to all clays, but may be taken as fairly applicable to clays of one general type (see CLAY). All clays contain more or less free silica in the form of sand, and usually a small percentage of undecomposed felspar. The most important ingredient, after the clay-substance and the sand, is oxide of iron; for the colour, and, to a less extent, the hardness and durability of the burnt bricks depend on its presence. The amount of oxide of iron in these clays varies from about 2 to 10%, and the colour of the bricks varies accordingly from light buff to chocolate; although the colour developed by a given percentage of oxide of iron is influenced by the other substances present and also by the method of firing. A clay containing from 5 to 8% of oxide of iron will, under ordinary conditions of firing, produce a red brick; but if the clay contains 3 to 4% of alkalis, or the brick is fired too hard, the colour will be darker and more purple. The actions of the alkalis and of increased temperature are probably closely related, for in either case the clay is brought nearer to its fusion point, and ferruginous clays generally become darker in colour as they approach to fusion. Alumina acts in the opposite direction, an excess of this compound tending to make the colour lighter and brighter. It is impossible to give a typical composition for such clays, as the percentages of the different constituents vary through such wide ranges. The clay substance may vary from 15 to 80%, the free silica or sand from 5 to 80%, the oxide of iron from 1 to 10%, the carbonates of lime and magnesia together, from 1 to 5%, and the alkalis from 1 to 4%. Organic matter is always present, and other impurities which frequently occur are the sulphates of lime and magnesia, the chlorides and nitrates of soda and potash, and iron-pyrites. The presence of organic matter g
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  



Top keywords:

colour

 

alkalis

 

percentage

 

composition

 

bricks

 
presence
 

substance

 

varies

 

darker

 

fusion


ordinary
 

plasticity

 

present

 

firing

 

matter

 

magnesia

 

silica

 
related
 

closely

 

nearer


brought

 

temperature

 

purple

 

actions

 

increased

 

conditions

 
produce
 
carbonates
 

Organic

 
ranges

constituents

 

impurities

 

frequently

 
potash
 

pyrites

 

organic

 

nitrates

 

sulphates

 
chlorides
 

percentages


opposite

 

direction

 

Alumina

 

approach

 

ferruginous

 

generally

 
excess
 
impossible
 

typical

 

brighter