FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
safety. Indeed, this limit should not be approached in practice on account of the risks of fracture from weakness or imperfections in the metal. 30. _Q._--What is the velocity at which the wheels of railway trains may run if we take 4,000 lbs. per square inch as the greatest strain to which malleable iron should be subjected? _A._--The weight of a malleable iron rim of one square inch sectional area and 7 feet diameter is 21.991 feet x 3.4 lbs. = 74.76, one half of which is 37.4 lbs. Then by the same process as before, 8,000/37.4 = 213.9, the centrifugal force in terms of the weight: 213.9 x 7, the diameter of the wheel = 1497.3, the square root of which, 38.3 x 4.01 = 155.187 feet per second, the highest velocity of the rims of railway carriage wheels that is consistent with safety. 155.187 feet per second is equivalent to 105.8 miles an hour. As 4,000 lbs. per square inch of sectional area is the utmost strain to which iron should be exposed in machinery, railway wheels can scarcely be considered safe at speed even considerably under 100 miles an hour, unless so constructed that the centrifugal force of the rim will be counteracted, to a material extent, by the centripetal action of the arms. Hooped wheels are very unsafe, unless the hoops are, by some process or other, firmly attached to the arms. It is of no use to increase the dimensions of the rim of a wheel with the view of giving increased strength to counteract the centrifugal force, as every increase in the weight of the rim will increase the centrifugal force in the same proportion. CENTRES OF GRAVITY, GYRATION, AND OSCILLATION. 31. _Q._--What do you understand by the centre of gravity of a body? _A._--That point within it, in which the whole of the weight may be supposed to be concentrated, and which continually endeavors to gain the lowest possible position. A body hung in the centre of gravity will remain at rest in any position. 32. _Q._--What is meant by the centre of gyration? _A._--The centre of gyration is that point in a revolving body in which the whole momentum may be conceived to be concentrated, or in which the whole effect of the momentum resides. If the ball of a governor were to be moved in a straight line, the momentum might be said to be concentrated at the centre of gravity of the ball; but inasmuch as, by its revolution round an axis, the part of the ball furthest removed from the axis moves more quickly than the part nea
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

centre

 
wheels
 

square

 

weight

 

centrifugal

 

momentum

 
gravity
 

concentrated

 

increase

 
railway

diameter

 
safety
 

gyration

 

process

 
position
 
velocity
 
sectional
 

strain

 

malleable

 
supposed

counteract

 

proportion

 

strength

 

increased

 

dimensions

 

giving

 

CENTRES

 
continually
 

OSCILLATION

 

GRAVITY


GYRATION
 
understand
 
resides
 

revolution

 

furthest

 
quickly
 
removed
 

straight

 

remain

 

lowest


governor

 
effect
 

revolving

 

conceived

 

endeavors

 

utmost

 

subjected

 
greatest
 

highest

 
approached