FREE BOOKS

Author's List




PREV.   NEXT  
|<   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287  
288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   >>   >|  
e lower animals show that caffein acts as a diuretic not only by influencing the circulation, but also by directly affecting the secreting cells, the probabilities being in favor of the first of these theories of action. According to Schroeder, not only the water but also the solids of the urine are increased. The question whether caffein has an influence upon tissue changes and the consequent nitrogenous elimination can not be considered as distinctly answered, though the most probable conclusion is that the action of caffein upon urea elimination and upon general nutrition is not direct or pronounced. While the therapeutic dose of caffein is broken up in the body with the formation of methylxanthin, which escapes with the urine, the toxic dose is at least in part eliminated by the kidney unchanged. The metabolism of the methyl purins, of which group caffein is a member, appears to vary with the quantity ingested. The manner in which the methyl group is liberated by the cell protoplasm is said[259] to determine the amount of stimulus which the tissues receive from these substances. The xanthin group is almost without any excitatory action, and its metabolic end products are constant. Perhaps the variation in the excretions of unchanged methylpurins is dependent upon the amount of total reactive energy they invoke. Baldi[260] found that caffein in small doses increases muscular excitability in dogs and frogs. The spinal and muscular hyperic excitability produced by caffein is, in his opinion, due to the methyl groups attached to the xanthin nucleus. Fredericq[261] states that caffein increases the irritability of the cardiac vagus and accelerates the appearance of pseudofatigue of the vagus which is produced by prolonged stimulation of the nerve. The action of caffein on the mammalian heart has also been investigated by Pilcher,[262] who found that, following the rapid intravenous injection of caffein, there is an acute fall of blood pressure; and with a maximal quantity of caffein, 10 milligrams per kilogram, the cardiac volume and the amplitude of the excursions are usually unchanged. With larger quantities, the volume progressively increases and the amplitude of the excursion decreases. Salant[263] found that the intravenous injection of 15 to 25 milligrams of caffein per kilogram in animals was followed by a fall of blood pressure amounting to
PREV.   NEXT  
|<   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287  
288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   >>   >|  



Top keywords:

caffein

 

action

 

increases

 

unchanged

 
methyl
 

intravenous

 

pressure

 

cardiac

 
produced
 

quantity


excitability
 
elimination
 

muscular

 

injection

 

xanthin

 

milligrams

 

amount

 

animals

 

amplitude

 

kilogram


volume
 

opinion

 

excretions

 

Fredericq

 

Perhaps

 

nucleus

 
methylpurins
 
variation
 

groups

 
attached

constant

 

invoke

 
energy
 

spinal

 

dependent

 
reactive
 
hyperic
 

larger

 

quantities

 

excursions


maximal

 

progressively

 

excursion

 
amounting
 

decreases

 
Salant
 

prolonged

 

stimulation

 

pseudofatigue

 
appearance