FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
angle, has now only 2 deg., _i.e._, a loss of _one-half_. The latter has therefore lost a greater _proportion_ of its angle of incidence, and consequently its lift, than has the main surface. It must then fall relative to the main surface. The tail falling, the aeroplane then assumes its first position, though at a slightly less altitude. Should a gust throw the nose of the aeroplane up, then the reverse happens. Both main surface and stabilizer increase their angles of incidence in the same amount, but the angle, and therefore the lift, of the stabilizer increases in greater proportion than does the angle and lift of the main surface, with the result that it lifts the tail. The aeroplane then assumes its first position, though at a slightly greater altitude. Do not fall into the widespread error that the angle of incidence varies as the angle of the aeroplane to the horizontal. It varies with such angle, but not as anything approaching it. Remember that the stabilizing effect of the longitudinal dihedral lasts only as long as there is momentum in the direction of the first course. These stabilizing movements are taking place all the time, even though imperceptible to the pilot. Aeroplanes have, in the past, been built with a stabilizing surface in front of the main surface instead of at the rear of it. In such design the main surface (which is then the tail surface as well as the principal lifting surface) must be set at a less angle than the forward stabilizing surface, in order to secure a longitudinal dihedral. The defect of such design lies in the fact that the main surface must have a certain angle to lift the weight--say 5 deg.. Then, in order to secure a sufficiency of longitudinal stability, it is necessary to set the forward stabilizer at about 15 deg.. Such a large angle of incidence results in a very poor lift-drift ratio (and consequently great loss of efficiency), except at very low velocities compared with the speed of modern aeroplanes. At the time such aeroplanes were built velocities were comparatively low, and this defect was, for that reason, not sufficiently appreciated. In the end it killed the "canard" or "tail-first" design. Aeroplanes of the Dunne and similar types possess no stabilizing surface distinct from the main surface, but they have a longitudinal dihedral which renders them stable. The main surface towards the wing-tips is given a decreasing angle of incidence and corre
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:

surface

 

incidence

 

stabilizing

 

longitudinal

 

aeroplane

 

stabilizer

 

design

 
greater
 

dihedral

 

velocities


aeroplanes

 

varies

 

Aeroplanes

 

assumes

 

proportion

 

defect

 
secure
 

forward

 

slightly

 

altitude


position

 

weight

 

efficiency

 

sufficiency

 

stability

 

results

 
reason
 

distinct

 

possess

 

similar


renders

 

decreasing

 

stable

 

comparatively

 

modern

 

compared

 

killed

 

canard

 
appreciated
 

sufficiently


momentum
 
angles
 

increase

 
reverse
 

amount

 
result
 

increases

 

Should

 

falling

 

relative