FREE BOOKS

Author's List




PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  
city and Climb. CHAPTER II. STABILITY AND CONTROL STABILITY is a condition whereby an object disturbed has a natural tendency to return to its first and normal position. Example: a weight suspended by a cord. INSTABILITY is a condition whereby an object disturbed has a natural tendency to move as far as possible away from its first position, with no tendency to return. Example: a stick balanced vertically upon your finger. NEUTRAL INSTABILITY is a condition whereby an object disturbed has no tendency to move farther than displaced by the force of the disturbance, and no tendency to return to its first position. In order that an aeroplane may be reasonably controllable, it is necessary for it to possess some degree of stability longitudinally, laterally, and directionally. LONGITUDINAL STABILITY in an aeroplane is its stability about an axis transverse to the direction of normal horizontal flight, and without which it would pitch and toss. LATERAL STABILITY is its stability about its longitudinal axis, and without which it would roll sideways. DIRECTIONAL STABILITY is its stability about its vertical axis, and without which it would have no tendency to keep its course. For such directional stability to exist there must be, in effect,[16] more "keel-surface" behind the vertical axis than there is in front of it. By keel-surface I mean every-thing to be seen when looking at an aeroplane from the side of it--the sides of the body, undercarriage, struts, wires, etc. The same thing applies to a weathercock. You know what would happen if there was insufficient keel-surface behind the vertical axis upon which it is pivoted. It would turn off its proper course, which is opposite to the direction of the wind. It is very much the same in the case of an aeroplane. The above illustration represents an aeroplane (directionally stable) flying along the course B. A gust striking it as indicated acts upon the greater proportion of keel-surface behind the turning axis and throws it into the new course. It does not, however, travel along the new course, owing to its momentum in the direction B. It travels, as long as such momentum lasts, in a direction which is the resultant of the two forces Thrust and Momentum. But the centre line of the aeroplane is pointing in the direction of the new course. Therefore its attitude, relative to the direction of motion, is more or less sideways, and it consequently receives
PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  



Top keywords:

aeroplane

 

direction

 

tendency

 

stability

 

STABILITY

 
surface
 

object

 

vertical

 

position

 

disturbed


return
 

condition

 

directionally

 

momentum

 

sideways

 

natural

 

normal

 
Example
 

INSTABILITY

 

applies


illustration

 

represents

 

weight

 

flying

 

stable

 

weathercock

 
insufficient
 
happen
 

pivoted

 
suspended

proper

 

opposite

 

centre

 
pointing
 

Momentum

 

forces

 

Thrust

 

Therefore

 
attitude
 

receives


relative

 

motion

 

resultant

 

turning

 

throws

 

proportion

 
greater
 
travels
 

travel

 

striking