FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
by "nosing-down," i.e., by operating the rudder to turn the nose of the aeroplane downward and towards the direction of motion as illustrated in sketch B. This results in the higher wing, which is on the outside of the turn, travelling with greater velocity, and therefore securing a greater reaction than the lower wing, thus tending to tilt the aeroplane over still more. The aeroplane is now almost upside-down, but its attitude relative to the direction of motion is correct and the controlling surfaces are all of them working efficiently. The recovery of a normal attitude relative to the Earth is then made as illustrated in sketch C. The Pilot must then learn to know just the angle of bank at which the margin of lift is lost, and, if a sharp turn necessitates banking beyond that angle, he must "nose-down." In this matter of banking and nosing-down, and, indeed, regarding stability and control generally, the golden rule for all but very experienced pilots should be: Keep the aeroplane in such an attitude that the air pressure is always directly in the pilot's face. The aeroplane is then always engaging the air as designed to do so, and both lifting and controlling surfaces are acting efficiently. The only exception to this rule is a vertical dive, and I think that is obviously not an attitude for any but very experienced pilots to hanker after. SPINNING.--This is the worst of all predicaments the pilot can find himself in. Fortunately it rarely happens. It is due to the combination of (1) a very steep spiral descent of small radius, and (2) insufficiency of keel-surface behind the vertical axis, or the jamming of the rudder end or elevator into a position by which the aeroplane is forced into an increasingly steep and small spiral. Owing to the small radius of such a spiral, the mass of the aeroplane may gain a rotary momentum greater, in effect, than the air pressure of the keel-surface or controlling surfaces opposed to it; and, when once such a condition occurs, it is difficult to see what can be done by the pilot to remedy it. The sensible pilot will not go beyond reasonable limits of steepness and radius when executing spiral descents. GLIDING DESCENT WITHOUT PROPELLER THRUST.--All aeroplanes are, or should be, designed to assume their gliding angle when the power and thrust is cut off. This relieves the pilot of work, worry, and danger should he find himself in a fog or cloud. The Pilot, although he may
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:

aeroplane

 
spiral
 
attitude
 

radius

 
greater
 
surfaces
 
controlling
 

relative

 

banking

 

pilots


experienced
 

efficiently

 

designed

 

rudder

 
vertical
 
motion
 

illustrated

 

pressure

 

direction

 
surface

sketch
 

nosing

 

position

 

forced

 
Fortunately
 

jamming

 

elevator

 
insufficiency
 

descent

 
combination

rarely
 

aeroplanes

 

assume

 

gliding

 

THRUST

 
GLIDING
 

DESCENT

 

WITHOUT

 

PROPELLER

 
thrust

danger

 

relieves

 

descents

 

executing

 
effect
 

opposed

 

condition

 
momentum
 

rotary

 

occurs