FREE BOOKS

Author's List




PREV.   NEXT  
|<   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84  
85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
d bottom lines are of equal length. We will now imagine it bent to form a circle, thus: The centre line is still the same length as before being bent; but the top line, being farther from the centre of the circle, is now longer than the centre line. That can be due only to the strain of elongation produced by the stress of tension. The wood between the centre line and the top line is then in tension; and the farther from the centre, the greater the strain, and consequently the greater the tension. The bottom line, being nearest to the centre of the circle, is now shorter than the centre line. That can be due only to the strain of crushing produced by the stress of compression. The wood between the centre and bottom lines is then in compression; and the nearer the centre of the circle, the greater the strain, and consequently the greater the compression. It then follows that there is neither tension nor compression, i.e., no stress, at the centre line, and that the wood immediately surrounding it is under considerably less stress than the wood farther away. This being so, the wood in the centre may be hollowed out without unduly weakening struts and spars. In this way 25 to 33 per cent. is saved in the weight of wood in an aeroplane. The strength of wood is in its fibres, which should, as far as possible, run without break from one end of a strut or spar to the other end. A point to remember is that the outside fibres, being farthest removed from the centre line, are doing by far the greatest work. SHEAR STRESS IS such that, when material collapses under it, one part slides over the other. Example: all the locking pins. Some of the bolts are also in shear or "sideways" stress, owing to lugs under their heads and from which wires are taken. Such a wire, exerting a sideways pull upon a bolt, tries to break it in such a way as to make one piece of the bolt slide over the other piece. TORSION.--This is a twisting stress compounded of compression, tension, and shear stresses. Example: the propeller shaft. NATURE OF WOOD UNDER STRESS.--Wood, for its weight, takes the stress of compression far better than any other stress. For instance: a walking-stick of less than 1 lb. in weight will, if kept perfectly straight, probably stand up to a compression stress of a ton or more before crushing; whereas, if the same stick is put under a bending stress, it will probably collapse to a stress of not more than about 5
PREV.   NEXT  
|<   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84  
85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:

centre

 

stress

 

compression

 

tension

 

greater

 

strain

 

circle

 
farther
 

weight

 

bottom


sideways

 

crushing

 

fibres

 

length

 

STRESS

 

Example

 
produced
 

locking

 

exerting

 

perfectly


straight

 

slides

 

walking

 

collapse

 

bending

 

instance

 
stresses
 

propeller

 

compounded

 

twisting


TORSION

 

NATURE

 

aeroplane

 

immediately

 

surrounding

 

considerably

 

unduly

 

hollowed

 
imagine
 

nearer


shorter
 
nearest
 

longer

 
elongation
 

weakening

 
struts
 

farthest

 

removed

 

remember

 

greatest