FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
orward stabilizing surface, in order to secure a longitudinal dihedral. The defect of such design lies in the fact that the main surface must have a certain angle to lift the weight--say 5 degrees. Then, in order to secure a sufficiency of longitudinal stability, it is necessary to set the forward stabilizer at about 15 degrees. Such a large angle of incidence results in a very poor lift-drift ratio (and consequently great loss of efficiency), except at very low velocities compared with the speed of modern aeroplanes. At the time such aeroplanes were built velocities were comparatively low, and this defect was; for that reason, not sufficiently appreciated. In the end it killed the "canard" or "tail-first" design. Aeroplanes of the Dunne and similar types possess no stabilizing surface distinct from the main surface, but they have a longitudinal dihedral which renders them stable. The main surface towards the wing-tips is given a decreasing angle of incidence and corresponding camber. The wing-tips then act as longitudinal stabilizers. This design of aeroplane, while very interesting, has not proved very practicable, owing to the following disadvantages: (1) The plan design is not, from a mechanical point of view, so sound as that of the ordinary aeroplane surface, which is, in plan, a parallelogram. It is, then, necessary to make the strength of construction greater than would otherwise be the case. That means extra weight. (2) The plan of the surface area is such that the aspect ratio is not so high as if the surface was arranged with its leading edges at right angles to the direction of motion. The lower the aspect ratio, then, the less the lift. This design, then, produces less lift for weight of surface than would the same surface if arranged as a parallelogram. (3) In order to secure the longitudinal dihedral, the angle of incidence has to be very much decreased towards the wing-tips. Then, in order that the lift-drift ratio may be preserved, there must be a corresponding decrease in the camber. That calls for surface ribs of varying cambers, and results in an expensive and lengthy job for the builder. (4) In order to secure directional stability, the surface is, in the centre, arranged to dip down in the form of a V, pointing towards the direction of motion. Should the aeroplane turn off its course, then its momentum in the direction of its first course causes it to move in a direction the resultant of the
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

surface

 

design

 

longitudinal

 

secure

 

direction

 

aeroplane

 

incidence

 
weight
 

arranged

 

dihedral


motion

 

velocities

 

aeroplanes

 

aspect

 

camber

 

degrees

 
stabilizing
 

defect

 

parallelogram

 

stability


results

 

leading

 

construction

 

strength

 

greater

 

cambers

 
centre
 

directional

 

builder

 

pointing


resultant

 

momentum

 

Should

 

lengthy

 

expensive

 

decreased

 

produces

 

angles

 
preserved
 

varying


ordinary
 
decrease
 

renders

 
compared
 

modern

 
efficiency
 

sufficiently

 

appreciated

 

reason

 

comparatively