FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
line of the surface. With decreasing angles, down to angles of about 30 degrees, the C.P. moves forward as in the case of flat surfaces (see B), but angles above 30 degrees do not interest us, since they produce a very low ratio of lift to drift. Below angles of about 30 degrees (see C) the dipping front part of the surface assumes a negative angle of incidence resulting in the DOWNWARD air pressure D, and the more the angle of incidence is decreased, the greater such negative angle and its resultant pressure D. Since the C.P. is the resultant of all the air forces, its position is naturally affected by D, which causes it to move backwards. Now, should some gust or eddy tend to make the surface decrease its angle of incidence, i.e., dive, then the C.P. moves backwards, and, pushing up the rear of the surface, causes it to dive the more. Should the surface tend to assume too large an angle, then the reverse happens; the pressure D decreases, with the result that C.P. moves forward and pushes up the front of the surface, thus increasing the angle still further, the final result being a "tail-slide." It is therefore necessary to find a means of stabilizing the naturally unstable cambered surface. This is usually secured by means of a stabilizing surface fixed some distance in the rear of the main surface, and it is a necessary condition that the neutral lift lines of the two surfaces, when projected to meet each other, make a dihedral angle. In other words, the rear stabilizing surface must have a lesser angle of incidence than the main surface--certainly not more than one-third of that of the main surface. This is known as the longitudinal dihedral. I may add that the tail-plane is sometimes mounted upon the aeroplane at the same angle as the main surface, but, in such cases, it attacks air which has received a downward deflection from the main surface, thus: The angle at which the tail surface attacks the air (the angle of incidence) is therefore less than the angle of incidence of the main surface. I will now, by means of the following illustration, try to explain how the longitudinal dihedral secures stability: First, imagine the aeroplane travelling in the direction of motion, which coincides with the direction of thrust T. The weight is, of course, balanced about a C.P., the resultant of the C.P. of the main surface and the C.P. of the stabilizing surface. For the sake of illustration, the stabilizing
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:

surface

 
incidence
 

stabilizing

 
angles
 

dihedral

 

pressure

 
resultant
 

degrees

 

aeroplane

 

attacks


naturally

 
forward
 

backwards

 

result

 

longitudinal

 

direction

 

illustration

 
negative
 

surfaces

 

secures


explain

 

downward

 

distance

 

projected

 

neutral

 
condition
 
travelling
 

stability

 
balanced
 

lesser


mounted
 

imagine

 

motion

 

thrust

 
coincides
 

deflection

 

received

 

weight

 
assumes
 

dipping


resulting

 
DOWNWARD
 

forces

 

position

 

decreased

 
greater
 

decreasing

 
produce
 

interest

 

affected