FREE BOOKS

Author's List




PREV.   NEXT  
|<   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264  
265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   >>   >|  
h in position and mode of development was the strict homologue of the vertebrate notochord. In his second paper he entered into much more detail, and published some excellent figures, often reproduced since (see Fig. 13), but the proof of the affinity between Vertebrates and Ascidians was in all essentials complete in his paper of 1866. [Illustration: FIG. 13.--Development of the Ascidian Larva. (After Kowalevsky.)] Kowalevsky's results were accepted by Haeckel, Gegenbaur, Darwin,[391] and many others as conclusive evidence of the origin of Vertebrates from a form resembling the ascidian tadpole; they were extended and amplified by Kupffer[392] in 1870, later by van Beneden and Julin[393] and numerous other workers; they were adversely criticised by Metschnikoff[394] and von Baer,[395] as well as by H. de Lacaze-Duthiers and A. Giard.[396] Lacaze-Duthiers and von Baer both held fast to the old view that Ascidians were directly comparable with Lamellibranch molluscs; they denied the homology of the ascidian nervous system with that of Vertebrates, von Baer being at great pains to show that the ascidian nerve-centre was really ventral in position. He pointed out also that the "notochord" was confined to the tail of the ascidian larva. Giard's attitude was by no means so uncompromising, and the criticisms he passed on the Kowalevsky theory are both subtle and instructive. He admits that there exists a real homology between, for instance, the notochord of Vertebrates and that of Ascidians. "But," he adds, "it is too often forgotten that homology does not necessarily mean an immediate common origin or close relationship. There exist, doubtless, homologies of great atavistic importance--I consider as such, for example, the formation of the cavity of Rusconi [the archenteron] in Ascidians and lower Vertebrates. But there are also adaptive and purely analogical homologies, such as the interdigital palmation of aquatic birds, amphibians and mammals. These are not purely analogous organs, for they can be superposed one on another, which is not the case with simply analogous structures (the bat's wing, for example, cannot be superposed on the bird's wing); they are homologous formations, resulting from the adaptation of the same fundamental organs to identical functions. Such is, in my opinion, the nature of the homology existing between the tail of the ascidian tadpole and that of Amphioxus or of young amphibians. The ascidia
PREV.   NEXT  
|<   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264  
265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   >>   >|  



Top keywords:

ascidian

 

Vertebrates

 

Ascidians

 

homology

 

notochord

 

Kowalevsky

 
tadpole
 
amphibians
 

purely

 

homologies


Lacaze

 

Duthiers

 

origin

 

position

 

superposed

 

analogous

 

organs

 

functions

 

instance

 
adaptation

resulting

 

forgotten

 

identical

 

fundamental

 

nature

 

uncompromising

 

criticisms

 

ascidia

 
attitude
 

passed


admits

 

formations

 

opinion

 

instructive

 

subtle

 
theory
 

Amphioxus

 

existing

 

exists

 

archenteron


simply

 
cavity
 

Rusconi

 

adaptive

 

mammals

 

aquatic

 
palmation
 

analogical

 

interdigital

 
structures