FREE BOOKS

Author's List




PREV.   NEXT  
|<   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256  
257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   >>   >|  
by comparing them with the mature stages of lower organisms, since we regard them as forms inherited from ancestors belonging to such lower stages"[382] (p. 6). It is worth noting that in Gegenbaur's opinion comparative anatomy was prior in importance to embryology, that embryology could hardly exist as an independent science, since it must seek the interpretation of its facts always in the facts of comparative anatomy (_Grundzuege_, pp. 7-8). While Gegenbaur was at one with all "pure" morphologists, whether evolutionary or pre-evolutionary, in minimising as far as possible the importance of function in the study of form, he was too cautious and sober a thinker not to recognise the immense part which function really plays. Thus he classified organs, according to their function, into those that established relations with the external world and those that had to do with nutrition and reproduction, very much as Bichat had done before him. Like Darwin, Haeckel and most evolutionists, he interpreted the homological resemblances of animals as being due to heredity, their differences as due to adaptation,[383] but he did not adopt Haeckel's crude and shallow definition of these terms. For Gegenbaur heredity was a convenient expression for the fact of transmission, and was not explained offhand as the mere mechanical result of a certain material structure handed down from germ to germ. Adaptation he defined in a way which took the fullest account of function, and was as far as possible removed from Haeckel's definition of it as the direct mechanical effect of the environment upon the organism. "The organism is altered," writes Gegenbaur, "according to the conditions which influence it. The consequent _Adaptations_ are to be regarded as gradual, but steadily progressive, changes in the organisation, which are striven after during the individual life of the organism, preserved by transmission in a series of generations, and further developed by means of natural selection. What has been gained by the ancestor becomes the heritage of the descendant. Adaptation and Transmission are thus alternately effective, the former representing the modifying, the latter the conservative principle.... Adaptation is commenced by a change in the function of organs, so that the _physiological relations_ of organs play the most important part in it. Since adaptation is merely the material expression of this change of function, the modification
PREV.   NEXT  
|<   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256  
257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   >>   >|  



Top keywords:

function

 

Gegenbaur

 

organism

 

organs

 
Adaptation
 
Haeckel
 

relations

 

adaptation

 

heredity

 

transmission


expression

 
definition
 

mechanical

 

material

 
evolutionary
 

comparative

 
change
 
embryology
 
importance
 

stages


anatomy

 

account

 
removed
 

fullest

 

defined

 
modifying
 

direct

 

principle

 
conservative
 
commenced

environment
 

effect

 
physiological
 
explained
 

offhand

 

convenient

 

modification

 

representing

 
handed
 

structure


result

 
important
 

altered

 

preserved

 

series

 

individual

 

striven

 

generations

 

ancestor

 

selection