FREE BOOKS

Author's List




PREV.   NEXT  
|<   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233  
234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   >>   >|  
(NH_{4})_{2}CO_{3} = NH_{4}HCO_{3} + NH_{3}. The acid carbonate, or bicarbonate, is prepared by saturating a solution of ammonium hydroxide with carbon dioxide: NH_{4}OH + CO_{2} = NH_{4}HCO_{3}. It is a well-crystallized stable substance. ~Ammonium sulphide~ ((NH_{4})_{2}S). Ammonium sulphide is prepared by the action of hydrosulphuric acid upon ammonium hydroxide: 2NH_{4}OH + H_{2}S = (NH_{4})_{2}S + 2H_{2}O. If the action is allowed to continue until no more hydrosulphuric acid is absorbed, the product is the acid sulphide, sometimes called the hydrosulphide: NH_{4}OH + H_{2}S = NH_{4}HS + H_{2}O. If equal amounts of ammonium hydroxide and ammonium acid sulphide are brought together, the normal sulphide is formed: NH_{4}OH + NH_{4}HS = (NH_{4})_{2}S + H_{2}O It has been obtained in the solid state, but only with great difficulty. As used in the laboratory it is always in the form of a solution. It is much used in the process of chemical analysis because it is a soluble sulphide and easily prepared. On exposure to the air ammonium sulphide slowly decomposes, being converted into ammonia, water, and sulphur: (NH_{4})_{2}S + O = 2NH_{3} + H_{2}O + S. As fast as the sulphur is liberated it combines with the unchanged sulphide to form several different ammonium sulphides in which there are from two to five sulphur atoms in the molecule, thus: (NH_{4})_{2}S_{2}, (NH_{4})_{2}S_{3}, (NH_{4})_{2}S_{5}. These sulphides in turn decompose by further action of oxygen, so that the final products of the reaction are those given in the equation. A solution of these compounds is yellow and is sometimes called _yellow ammonium sulphide_. FLAME REACTION--SPECTROSCOPE When compounds of either sodium or potassium are brought into the non-luminous flame of a Bunsen burner the flame becomes colored. Sodium compounds color it intensely yellow, while those of potassium color it pale violet. When only one of these elements is present it is easy to identify it by this simple test, but when both are present the intense color of the sodium flame entirely conceals the pale tint characteristic of potassium compounds. It is possible to detect the potassium flame in such cases, however, in the following way. When light is allowed to shine through a very small hole or slit in some kind of a screen, such as a piece of metal, upon
PREV.   NEXT  
|<   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233  
234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   >>   >|  



Top keywords:

sulphide

 

ammonium

 
compounds
 

potassium

 
solution
 

action

 

sulphur

 
yellow
 

prepared

 

hydroxide


brought

 

sodium

 

present

 
called
 

Ammonium

 

hydrosulphuric

 
sulphides
 

allowed

 

reaction

 

colored


products
 

Sodium

 
intensely
 
burner
 

luminous

 
REACTION
 

SPECTROSCOPE

 

equation

 

Bunsen

 

screen


detect

 

simple

 

identify

 
elements
 

intense

 

characteristic

 

oxygen

 

conceals

 

violet

 

converted


normal

 

formed

 
amounts
 

hydrosulphide

 

obtained

 

laboratory

 

difficulty

 

product

 

absorbed

 
carbon