FREE BOOKS

Author's List




PREV.   NEXT  
|<   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215  
216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   >>   >|  
energy. Niagara Falls is the most important locality in this country for such industries, and many different electro-chemical products are manufactured there. Some industries depend upon electrolytic processes, while in others the electrical energy is used merely as a source of heat in electric furnaces. ~Preparation of compounds of the metals.~ Since the compounds of the metals are so numerous and varied in character, there are many ways of preparing them. In many cases the properties of the substance to be prepared, or the material available for its preparation, suggest a rather unusual way. There are, however, a number of general principles which are constantly applied in the preparation of the compounds of the metals, and a clear understanding of them will save much time and effort in remembering the details in any given case. The most important of these general methods for the preparation of compounds are the following: 1. _By direct union of two elements._ This is usually accomplished by heating the two elements together. Thus the sulphides, chlorides, and oxides of a metal can generally be obtained in this way. The following equations serve as examples of this method: Fe + S = FeS, Mg + O = MgO, Cu + 2Cl = CuCl_{2}. 2. _By the decomposition of a compound._ This decomposition may be brought about either by heat alone or by the combined action of heat and a reducing agent. Thus when the nitrate of a metal is heated the oxide of the metal is usually obtained. Copper nitrate, for example, decomposes as follows: Cu(NO_{3})_{2} = CuO + 2NO_{2} + O. Similarly the carbonates of the metals yield oxides, thus: CaCO_{3} = CaO + CO_{2}. Most of the hydroxides form an oxide and water when heated: 2Al(OH)_{3} = Al_{2}O_{3} + 3H_{2}O. When heated with carbon, sulphates are reduced to sulphides, thus: BaSO_{4} + 2C = BaS + 2CO_{2}. 3. _Methods based on equilibrium in solution._ In the preparation of compounds the first requisite is that the reactions chosen shall be of such a kind as will go on to completion. In the chapter on chemical equilibrium it was shown that reactions in solution may become complete in either of three ways: (1) a gas may be formed which escapes from solution; (2) an insoluble solid may be formed which precipitates; (3) two different ions may combine to form undissociated molecules. By the judicious selection of materials these principles may be
PREV.   NEXT  
|<   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215  
216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   >>   >|  



Top keywords:
compounds
 

preparation

 

metals

 

solution

 

heated

 

principles

 

reactions

 

formed

 

general

 
nitrate

decomposition

 

sulphides

 

oxides

 

equilibrium

 

elements

 

obtained

 

energy

 
important
 
industries
 
chemical

country

 

products

 

manufactured

 

reduced

 

sulphates

 

carbon

 

hydroxides

 

Copper

 
Similarly
 

carbonates


electro
 
decomposes
 

escapes

 
insoluble
 
complete
 
precipitates
 

judicious

 

selection

 
materials
 
molecules

undissociated
 

combine

 

locality

 
requisite
 
Methods
 

Niagara

 

completion

 

chapter

 

chosen

 

action