FREE BOOKS

Author's List




PREV.   NEXT  
|<   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189  
190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   >>   >|  
accurately, and consequently the part in them due to nitrogen is a little uncertain, as will be seen in the table. All we can tell by this method is that the true weight is very near 14. The equivalent can however be determined very accurately, and we have seen that it is some multiple or submultiple of the true atomic weight. Since molecular-weight determinations have shown that in the case of nitrogen the atomic weight is near 14, and we have found the equivalent to be 7.02, it is evident that the true atomic weight is twice the equivalent, or 7.02 x 2 = 14.04. ~Summary.~ These, then, are the steps necessary to establish the atomic weight of an element. 1. Determine the equivalent accurately by analysis. 2. Determine the molecular weight of a large number of compounds of the element, and by analysis the part of the molecular weight due to the element. The smallest number so obtained will be approximately the atomic weight. 3. Multiply the equivalent by the small whole number (usually 1, 2, or 3), which will make a number very close to the approximate atomic weight. The figure so obtained will be the true atomic weight. ~Molecular weights of the elements.~ It will be noticed that the molecular weight of nitrogen obtained by multiplying its density by 28.9 is 28.08. Yet the atomic weight of nitrogen as deduced from a study of its gaseous compounds is 14.04. The simplest explanation that can be given for this is that the gaseous nitrogen is made up of molecules, each of which contains two atoms. In this respect it resembles oxygen; for we have seen that an entirely different line of reasoning leads us to believe that the molecule of oxygen contains two atoms. When we wish to indicate molecules of these gases the symbols N_{2} and O_{2} should be used. When we desire to merely show the weights taking part in a reaction this is not necessary. The vapor densities of many of the elements show that, like oxygen and nitrogen, their molecules consist of two atoms. In other cases, particularly among the metals, the molecule and the atom are identical. Still other elements have four atoms in their molecules. While oxygen contains two atoms in its molecules, a study of ozone has led to the conclusion that it has three. The formation of ozone from oxygen can therefore be represented by the equation 3O_{2} = 2O_{3}. ~Other methods of determining molecular weights.~ It will be noticed that Avogadro's law gives
PREV.   NEXT  
|<   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189  
190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   >>   >|  



Top keywords:

weight

 
atomic
 

nitrogen

 
molecular
 
molecules
 

oxygen

 

equivalent

 

number

 
elements
 
obtained

accurately
 

weights

 

element

 

analysis

 

Determine

 

compounds

 

molecule

 

gaseous

 
noticed
 
desire

symbols

 

represented

 

equation

 

formation

 

conclusion

 

Avogadro

 
methods
 
determining
 

consist

 
densities

reaction

 
identical
 

reasoning

 
metals
 
taking
 

Molecular

 
evident
 

determinations

 

establish

 
Summary

submultiple

 

uncertain

 

multiple

 

determined

 

method

 

smallest

 
explanation
 

simplest

 

deduced

 

resembles