FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
ion being especially great in the case of iron smelting. For this last operation some kinds of raw coal are unsuitable, and such coal is converted into coke before being used in the blast furnace. The fact that the iron ore and the coal occur in the same district is another cause of our high rank as a manufacturing nation. It has often been a matter of wonder that iron ore and the material essential for extracting the metal from it should be found associated together, but it is most likely that this combination of circumstances, which has been so fortunate for our industrial prosperity, is not a mere matter of accident, but the result of cause and effect. It is, in fact, probable that the iron ore owes its origin to the reduction and precipitation of iron compounds by the decomposing vegetation of the Carboniferous period, and this would account for the occurrence of the bands of ironstone in the same deposits with the coal. In former times, when the area in the south-east of England known as the Weald was thickly wooded, the towns and villages of this district were the chief centres of the iron manufacture. The ore, which was of a different kind to that found in the coal-fields, was smelted by means of the charcoal obtained from the wood of the Wealden forests, and the manufacture lingered on in Kent, Sussex, and Surrey till late in the last century, the railings round St. Paul's, London, being made from the last of the Sussex iron. When the northern coal-fields came to be extensively worked, and ironstone was found so conveniently at hand, the Wealden iron manufacture declined, and in many places in the district we now find disused furnaces and heaps of buried slag as the last witnesses of an extinct industry. From coal we not only get mechanical work when we burn it to generate heat under a steam boiler, but we also get chemical work out of it when we employ it to reduce a metallic ore, or when we make use of it as a source of carbon in the manufacture of certain chemical products, such as the alkalies. We have therefore in coal a substance which supplies us with the power of doing work, either mechanical, chemical, or some other form, and anything which does this is said to be a source of energy. It is a familiar doctrine of modern science that energy, like matter, is indestructible. The different forms of energy can be converted into one another, such, for example, as chemical energy into heat or electricity, he
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:

manufacture

 

energy

 

chemical

 
district
 

matter

 
ironstone
 

converted

 

source

 
Wealden
 
Sussex

mechanical

 

fields

 
buried
 
extinct
 
industry
 

witnesses

 

railings

 

worked

 

conveniently

 
century

northern

 
extensively
 

declined

 

disused

 

London

 

places

 
furnaces
 
carbon
 

familiar

 

doctrine


modern

 

electricity

 

science

 

indestructible

 

supplies

 

employ

 

reduce

 
metallic
 

boiler

 

generate


substance
 

alkalies

 
products
 
extracting
 
essential
 

material

 

accident

 
result
 
effect
 

prosperity