FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
vided by m, gave the equivalent conductivity of the substance dissolved. This procedure appears justifiable, for as long as conductivity is proportional to concentration it is evident that each part of the dissolved matter produces its own independent effect, so that the total conductivity is the sum of the conductivities of the parts; when this ceases to hold, the concentration of the solution has in general become so great that the conductivity of the solvent may be neglected. The general result of these experiments can be represented graphically by plotting k/m as ordinates and [root 3]m as abscissae, [root 3]m being a number proportional to the reciprocal of the average distance between the molecules, to which it seems likely that the molecular conductivity may be related. The general types of curve for a simple neutral salt like potassium or sodium chloride and for a caustic alkali or acid are shown in fig. 4. The curve for the neutral salt comes to a limiting value; that for the acid attains a maximum at a certain very small concentration, and falls again when the dilution is carried farther. It has usually been considered that this destruction of conductivity is due to chemical action between the acid and the residual impurities in the water. At such great dilution these impurities are present in quantities comparable with the amount of acid which they convert into a less highly conducting neutral salt. In the case of acids, then, the maximum must be taken as the limiting value. The decrease in equivalent conductivity at great dilution is, however, so constant that this explanation seems insufficient. The true cause of the phenomenon may perhaps be connected with the fact that the bodies in which it occurs, acids and alkalis, contain the ions, hydrogen in the one case, hydroxyl in the other, which are present in the solvent, water, and have, perhaps because of this relation, velocities higher than those of any other ions. The values of the molecular conductivities of all neutral salts are, at great dilution, of the same order of magnitude, while those of acids at their maxima are about three times as large. The influence of increasing concentration is greater in the case of salts containing divalent ions, and greatest of all in such cases as solutions of ammonia and acetic acid, which are substances of very low conductivity. [Illustration: FIG. 4.] _Theory of Moving Ions._--Kohlrausch found that, when the pola
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

conductivity

 
concentration
 

neutral

 
dilution
 

general

 

equivalent

 
present
 

impurities

 

limiting

 

molecular


maximum

 
solvent
 

proportional

 

conductivities

 

dissolved

 

solutions

 

insufficient

 
connected
 

explanation

 

Illustration


constant

 

ammonia

 

phenomenon

 

substances

 

acetic

 
Moving
 
Kohlrausch
 

convert

 
highly
 

conducting


Theory
 

decrease

 

bodies

 

higher

 
velocities
 

relation

 

maxima

 

magnitude

 
values
 

divalent


alkalis

 
occurs
 

greatest

 

hydrogen

 

greater

 
influence
 

hydroxyl

 
increasing
 

attains

 

neglected