FREE BOOKS

Author's List




PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  
hemical equilibrium, be all active in turn. The charge on each, as we have seen, can be expressed in absolute units, and therefore the velocity with which they move past each other can be calculated. This was first done by Kohlrausch (_Gottingen Nachrichten_, 1876, p. 213, and _Das Leitvermogen der Elektrolyte_, Leipzig, 1898) about 1879. In order to develop Kohlrausch's theory, let us take, as an example, the case of an aqueous solution of potassium chloride, of concentration n gram-equivalents per cubic centimetre. There will then be n gram-equivalents of potassium ions and the same number of chlorine ions in this volume. Let us suppose that on each gram-equivalent of potassium there reside +e units of electricity, and on each gram-equivalent of chlorine ions -e units. If u denotes the average velocity of the potassium ion, the positive charge carried per second across unit area normal to the flow is n e u. Similarly, if v be the average velocity of the chlorine ions, the negative charge carried in the opposite direction is n e v. But positive electricity moving in one direction is equivalent to negative electricity moving in the other, so that, before changes in concentration sensibly supervene, the total current, C, is ne(u + v). Now let us consider the amounts of potassium and chlorine liberated at the electrodes by this current. At the cathode, if the chlorine ions were at rest, the excess of potassium ions would be simply those arriving in one second, namely, nu. But since the chlorine ions move also, a further separation occurs, and nv potassium ions are left without partners. The total number of gram-equivalents liberated is therefore n(u + v). By Faraday's law, the number of grams liberated is equal to the product of the current and the electro-chemical equivalent of the ion; the number of gram-equivalents therefore must be equal to [eta]C, where [eta] denotes the electro-chemical equivalent of hydrogen in C.G.S. units. Thus we get n(u + v) = [eta]C = [eta]ne(u + v), and it follows that the charge, e, on 1 gram-equivalent of each kind of ion is equal to 1/[eta]. We know that Ohm's Law holds good for electrolytes, so that the current C is also given by k.dP/dx, where k denotes the conductivity of the solution, and dP/dx the potential gradient, i.e. the change in potential per unit length along the lines of current flow. Thus n
PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  



Top keywords:

potassium

 
chlorine
 

equivalent

 
current
 

charge

 

equivalents

 
number
 

velocity

 

denotes

 

electricity


liberated

 
positive
 

carried

 

concentration

 

moving

 

chemical

 

electro

 
potential
 

negative

 

direction


average

 

Kohlrausch

 

solution

 

length

 

occurs

 
partners
 
Faraday
 

change

 
separation
 

simply


excess
 

arriving

 

expressed

 

product

 
electrolytes
 

equilibrium

 

hemical

 

active

 
hydrogen
 

gradient


conductivity

 
absolute
 

reside

 

suppose

 

Elektrolyte

 
Leipzig
 

volume

 
chloride
 

aqueous

 

centimetre