FREE BOOKS

Author's List




PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  
f the cable damps the vibration in the conductor. In the Atlantic cable, strong currents of electricity are poured periodically into one end, and though much enfeebled when they reach the other they are sufficiently strong to work a very delicate "mirror galvanometer" (invented by Lord Kelvin), which moves a reflected ray up and down a screen, the direction of the movements indicating a dot or a dash. Reversible currents are used in transmarine telegraphy. The galvanometer is affected like the coils and small magnet in Wheatstone's needle instrument (p. 128). Telephonic currents are too feeble to penetrate many miles of cable. There is telephonic communication between England and France, and England and Ireland. But transatlantic telephony is still a thing of the future. It is hoped, however, that by inserting induction coils at intervals along the cables the currents may be "stepped up" from point to point, and so get across. Turning to Fig. 64, we may suppose S to be on shore at the English end, and S_2 to be the _primary_ winding of an induction coil a hundred miles away in the sea, which magnifies the enfeebled vibrations for a journey to S_3, where they are again revived; and so on, till the New World is reached. The difficulty is to devise induction coils of great power though of small size. Yet science advances nowadays so fast that we may live to hear words spoken at the Antipodes. [16] In 1896 the late Li Hung Chang sent a cablegram from China to England (12,608 miles), and received a reply, in _seven minutes_. Chapter IX. DYNAMOS AND ELECTRIC MOTORS. A simple dynamo--Continuous-current dynamos--Multipolar dynamos--Exciting the field magnets--Alternating current dynamos--The transmission of power--The electric motor--Electric lighting--The incandescent lamp--Arc lamps--"Series" and "parallel" arrangement of lamps--Current for electric lamps--Electroplating. In previous chapters we have incidentally referred to the conversion of mechanical work into electrical energy. In this we shall examine how it is done--how the silently spinning dynamo develops power, and why the motor spins when current is passed through it. We must begin by returning to our first electrical diagram (Fig. 50), and calling to mind the invisible "lines of force" which permeate the ether in the immediate neighbourhood of a magnet's poles, called the _magnetic field_ of the magnet. Many year
PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  



Top keywords:

currents

 
dynamos
 

magnet

 
current
 

England

 

induction

 
electrical
 

dynamo

 

strong

 

galvanometer


electric

 
enfeebled
 

Multipolar

 

magnets

 

simple

 

Continuous

 

Exciting

 
Antipodes
 

spoken

 

nowadays


cablegram

 

Chapter

 

DYNAMOS

 

ELECTRIC

 

minutes

 
received
 
Alternating
 

MOTORS

 
diagram
 

calling


returning
 

passed

 

invisible

 

called

 
magnetic
 

neighbourhood

 

permeate

 

develops

 
arrangement
 

parallel


Current

 
Electroplating
 

previous

 

Series

 

Electric

 
lighting
 

incandescent

 
chapters
 

advances

 

examine