FREE BOOKS

Author's List




PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  
high resistance to the current, but is not destroyed by the resulting heat. In Fig. 80 is shown a fan propelling liquid constantly through a pipe. Let us assume that the liquid is one which develops great friction on the inside of the pipe. At the contraction, where the speed of travel is much greater than elsewhere in the circuit, most heat will be produced. [Illustration: FIG. 80.--Diagram to show circulation of water through a pipe.] In quite the early days of the glow-lamp platinum wire was found to be unreliable as regards melting, and filaments of carbon are now used. To prevent the wasting away of the carbon by combination with oxygen the filament is enclosed in a glass bulb from which practically all air has been sucked by a mercury pump before sealing. [Illustration: FIG. 81.--The electrical counterpart of Fig. 80. The filament takes the place of the contraction in the pipe.] The manufacture of glow-lamps is now an important industry. One brand of lamp[20] is made as follows:--First, cotton-wool is dissolved in chloride of zinc, and forms a treacly solution, which is squirted through a fine nozzle into a settling solution which hardens it and makes it coil up like a very fine violin string. After being washed and dried, it is wound on a plumbago rod and baked in a furnace until only the carbon element remains. This is the filament in the rough. It is next removed from the rod and tipped with two short pieces of fine platinum wire. To make the junction electrically perfect the filament is plunged in benzine and heated to whiteness by the passage of a strong current, which deposits the carbon of the benzine on the joints. The filament is now placed under the glass receiver of an air-pump, the air is exhausted, hydro-carbon vapour is introduced, and the filament has a current passed through it to make it white hot. Carbon from the vapour is deposited all over the filament until the required electrical resistance is attained. The filament is now ready for enclosure in the bulb. When the bulb has been exhausted and sealed, the lamp is tested, and, if passed, goes to the finishing department, where the two platinum wires (projecting through the glass) are soldered to a couple of brass plates, which make contact with two terminals in a lamp socket. Finally, brass caps are affixed with a special water-tight and hard cement. ARC LAMPS. In _arc_ lighting, instead of a contraction at a point in the circu
PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  



Top keywords:

filament

 

carbon

 

contraction

 

current

 

platinum

 

benzine

 

Illustration

 

vapour

 

exhausted

 

solution


liquid
 

resistance

 

passed

 
electrical
 

strong

 

joints

 

whiteness

 

passage

 
deposits
 

tipped


plumbago

 

furnace

 
element
 

string

 

washed

 
remains
 

junction

 

electrically

 

perfect

 

plunged


pieces
 

removed

 
heated
 
deposited
 

Finally

 

affixed

 

special

 

socket

 

terminals

 

soldered


couple
 

plates

 

contact

 

lighting

 
cement
 

projecting

 

Carbon

 

violin

 

required

 
receiver