FREE BOOKS

Author's List




PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  
e that again is the _retina_, or curved focussing screen of the eye, which may best be described as a network of fibres ramifying from the optic nerve, which carries sight sensations to the brain. The hollow of the ball is full of a jelly-like substance called the _vitreous humour_; and the cavity between the lens and the cornea is full of water. We have already seen that, in focussing, the distance between lens and image depends on the distance between object and lens. Now, the retina cannot be pushed nearer to or pulled further away from its lens, like the focussing screen of a camera. How, then, is the eye able to focus sharply objects at distances varying from a foot to many miles? [Illustration: FIG. 116.--Section of the human eye.] As a preliminary to the answer we must observe that the more convex a lens is, the shorter is its focus. We will suppose that we have a box camera with a lens of six-inch focus fixed rigidly in the position necessary for obtaining a sharp image of distant objects. It so happens that we want to take with it a portrait of a person only a few feet from the lens. If it were a bellows camera, we should rack out the back or front. But we cannot do this here. So we place in front of our lens a second convex lens which shortens its principal focus; so that _in effect_ the box has been racked out sufficiently. Nature, however, employs a much more perfect method than this. The eye lens is plastic, like a piece of india-rubber. Its edges are attached to ligaments (L L), which pull outwards and tend to flatten the curve of its surfaces. The normal focus is for distant objects. When we read a book the eye adapts itself to the work. The ligaments relax and the lens decreases in diameter while thickening at the centre, until its curvature is such as to focus all rays from the book sharply on the retina. If we suddenly look through the window at something outside, the ligaments pull on the lens envelope and flatten the curves. This wonderful lens is achromatic, and free from spherical aberration and distortion of image. Nor must we forget that it is aided by an automatic "stop," the _iris_, the central hole of which is named the _pupil_. We say that a person has black, blue, or gray eyes according to the colour of the iris. Like the lens, the iris adapts itself to all conditions, contracting when the light is strong, and opening when the light is weak, so that as uniform an amount of light as
PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  



Top keywords:

objects

 

ligaments

 

camera

 

focussing

 

retina

 

person

 

distant

 

sharply

 

screen

 
convex

adapts
 

flatten

 

distance

 
decreases
 

diameter

 

sensations

 
substance
 

thickening

 
suddenly
 

centre


curvature
 

normal

 

rubber

 

plastic

 

perfect

 

method

 

attached

 

called

 

surfaces

 

outwards


humour

 

vitreous

 

colour

 
conditions
 

uniform

 

amount

 

opening

 
strong
 

contracting

 
hollow

central
 
wonderful
 

achromatic

 

spherical

 

curves

 

envelope

 

aberration

 

distortion

 
automatic
 

forget