FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
aves strike the aerial wire of the receiving station, and cause the coherer to cohere and pass current. The relay is closed, and both tapper and Morse inker begin to work. The tapper keeps striking the coherer and shakes the particles loose after every cohesion. If this were not done the current of A would pass continuously after cohesion had once taken place. When the key of the transmitter is pressed down, the waves follow one another very quickly, and the acquired conductivity of the coherer is only momentarily destroyed by the tap of the hammer. During the impression of a dot by the Morse inker, contact is made and broken repeatedly; but as the armature of the inker is heavy and slow to move it does not vibrate in time with the relay and tapper. Therefore the Morse instrument reproduces in dots and dashes the short and long depressions of the key at the transmitting station, while the tapper works rapidly in time with the relay. The Morse inker is shown diagrammatically. While current passes through M the armature is pulled towards it, the end P, carrying an inked wheel, rises, and a mark is made on the tape W, which is moved continuously being drawn forward off reel R by the clockwork--or electrically-driven rollers R^1 R^2. SYNTONIC TRANSMISSION. If a number of transmitting stations are sending out messages simultaneously, a jumble of signals would affect all the receivers round, unless some method were employed for rendering a receiver sensitive only to the waves intended to influence it. Also, if distinction were impossible, even with one transmitter in action its message might go to undesired stations. There are various ways of "tuning" receivers and transmitters, but the principle underlying them all is analogous to that of mechanical vibration. If a weight is suspended from the end of a spiral spring, and given an upward blow, it bobs up and down a certain number of times per minute, every movement from start to finish having exactly the same duration as the rest. The resistance of the air and the internal friction of the spring gradually lessen the amplitude of the movements, and the weight finally comes to rest. Suppose that the weight scales 30 lbs., and that it naturally bobs twenty times a minute. If you now take a feather and give it a push every three seconds you can coax it into vigorous motion, assuming that every push catches it exactly on the rebound. The same effect would be produced more s
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:

tapper

 
current
 

weight

 
coherer
 

armature

 

receivers

 
number
 

transmitting

 

spring

 

stations


minute

 
continuously
 

station

 

cohesion

 

transmitter

 

rebound

 

message

 
underlying
 

principle

 

analogous


assuming

 

transmitters

 

tuning

 

action

 

catches

 
undesired
 
distinction
 

produced

 
effect
 

method


employed
 

mechanical

 

impossible

 

influence

 
intended
 

rendering

 

receiver

 

sensitive

 
spiral
 

resistance


internal

 
friction
 

twenty

 

duration

 

affect

 
naturally
 

gradually

 
Suppose
 

scales

 

finally