FREE BOOKS

Author's List




PREV.   NEXT  
|<   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416  
417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   >>   >|  
in which the breakwater is situated. On the other hand, the height, and, consequently, the destructive force of waves, is increased on running up a funnel-shaped bay, by the increasing concentration of the waves in the narrowing width, just as the tidal range of a moderate tidal current is much augmented by its passage up the Bay of Fundy, or up the Bristol Channel into the Severn estuary, or by filling the shallow enclosed bay of St Malo. This effect is intensified when the bay faces the direction of the strongest winds. Thus at Wick a mass of masonry weighing 1350 tons, placed at the head of the breakwater projecting half-way across the bay and facing the entrance, was moved by the waves during a violent storm; and a portion of Peterhead breakwater, weighing 3300 tons, was shifted 2 in. in 1898, indicating a wave-stroke of 2 tons per sq. ft. Southwesterly gales, blowing up the Gulf of Genoa, cause large waves to roll into the bay, reaching a height of about 21 ft. in the worst storms. Where outlying sandbanks stretch in front of a coast, as for instance the Stroombank in front of Ostend and the adjacent shore, and the sandbanks opposite Yarmouth sheltering Yarmouth Roads, large waves cannot approach the land, for they break on the sandbanks outside. Waves, indeed, always break when, on running up a shoaling beach, they reach a depth approximately equal to their height; and the largest waves which can reach a shore protected by intervening sandbanks, are those which are low enough to pass over the banks without breaking. The force of the wind, as transmitted by degrees to the sea, is manifested as a series of progressing undulations without any material displacement of the body of water, each undulation transmitting its accumulated force to the next in the direction the wind is blowing, till at last, on encountering an obstacle to its onward course, each wave, no longer finding any water to which to communicate its energy, deals a blow against the obstacle proportionate to its size and rate of transmission; or on reaching shoal water near the shore, the undulation is finally transformed into a breaking wave rushing up the sloping beach. till, on its energy being spent, it recoils back to the sea down the beach. A breaking wave concentrates its transmitted force on a portion of the water forming the undulation, which, consequently, strikes a more powerful blow over a limited area against any structure than the more
PREV.   NEXT  
|<   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416  
417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   >>   >|  



Top keywords:

sandbanks

 

breaking

 
undulation
 

height

 

breakwater

 

transmitted

 
portion
 
running
 

obstacle

 

weighing


Yarmouth
 
reaching
 
direction
 

blowing

 

energy

 

intervening

 
protected
 

largest

 

transformed

 

rushing


sloping

 

structure

 

concentrates

 

recoils

 

shoaling

 

finally

 

approximately

 

accumulated

 

transmitting

 

powerful


displacement

 

communicate

 

onward

 

longer

 

finding

 
encountering
 
material
 

transmission

 

degrees

 

forming


limited
 
strikes
 

undulations

 

proportionate

 

progressing

 

manifested

 
series
 

shallow

 
enclosed
 

filling