FREE BOOKS

Author's List




PREV.   NEXT  
|<   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273  
274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   >>   >|  
and, therefore, on causation. The inductive evidence underlying an estimate of probability may be of three kinds: (a) direct statistics of the events in question; as when we find that, at the age of 20, the average expectation of life is 39-40 years. This is an empirical law, and, if we do not know the causes of any event, we must be content with an empirical law. But (b) if we do know the causes of an event, and the causes which may prevent its happening, and can estimate the comparative frequency of their occurring, we may deduce the probability that the effect (that is, the event in question) will occur. Or (c) we may combine these two methods, verifying each by means of the other. Now either the method (b) or (_a fortiori_) the method (c) (both depending on causation) is more trustworthy than the method (a) by itself. But, further, a merely empirical statistical law will only be true as long as the causes influencing the event remain the same. A die may be found to turn ace once in six throws, on the average, in close accordance with mathematical theory; but if we load it on that facet the results will be very different. So it is with the expectation of life, or fire, or shipwreck. The increased virulence of some epidemic such as influenza, an outbreak of anarchic incendiarism, a moral epidemic of over-loading ships, may deceive the hopes of insurance offices. Hence we see, again, that probability depends upon causation, not causation upon probability. That uncertainty of an event which arises not from ignorance of the law of its cause, but from our not knowing whether the cause itself does or does not occur at any particular time, is Contingency. Sec. 5. The nature of an average supposes deviations from it. Deviations from an average, or "errors," are assumed to conform to the law (1) that the greater errors are less frequent than the smaller, so that most events approximate to the average; and (2) that errors have no "bias," but are equally frequent and equally great in both directions from the mean, so that they are scattered symmetrically. Hence their distribution may be expressed by some such figure as the following: [Illustration: FIG. 11.] Here _o_ is the average event, and _oy_ represents the number of average events. Along _ox_, in either direction, deviations are measured. At _p_ the amount of error or deviation is _op_; and the number of such deviations is represented by the line or ordinate _p
PREV.   NEXT  
|<   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273  
274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   >>   >|  



Top keywords:

average

 
probability
 
causation
 

empirical

 

method

 

deviations

 

errors

 

events

 

equally

 

epidemic


frequent

 
estimate
 

question

 
expectation
 
number
 

knowing

 

nature

 

supposes

 

represented

 

Contingency


direction

 

arises

 

offices

 

ordinate

 

insurance

 
deceive
 

represents

 

uncertainty

 

ignorance

 
depends

assumed

 

scattered

 

directions

 

loading

 
symmetrically
 

Illustration

 

figure

 
distribution
 

expressed

 

greater


conform
 

deviation

 

measured

 

smaller

 

amount

 

approximate

 

Deviations

 

deduce

 

effect

 
occurring