FREE BOOKS

Author's List




PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  
l, or a Chinaman in the street, calls for explanation; and among some nations, eclipses have been explained by supposing a dragon to devour the sun or moon; solitary boulders, as the missiles of a giant; and so on. Such explanations, plainly, are attempts to regard rare phenomena as similar to others that are better known; a snake having been seen to swallow a rabbit, a bigger one may swallow the sun: a giant is supposed to bear much the same relation to a boulder as a boy does to half a brick. When any very common thing seems to need no explanation, it is because the several instances of its occurrence are a sufficient basis of assimilation to satisfy most of us. Still, if a reason for such a thing be demanded, the commonest answer has the same implication, namely, that assimilation or classification is a sufficient reason for it. Thus, if climbing trees is referred to the need of exercise, it is assimilated to running, rowing, etc.; if the customs of a savage tribe are referred to the command of its gods, they are assimilated to those things that are done at the command of chieftains. Explanation, then, is a kind of classification; it is the finding of resemblance between the phenomenon in question and other phenomena. In Mathematics, the explanation of a theorem is the same as its proof, and consists in showing that it repeats, under different conditions, the definitions and axioms already assumed and the theorems already demonstrated. In Logic, the major premise of every syllogism is an explanation of the conclusion; for the minor premise asserts that the conclusion is an example of the major premise. In Concrete Sciences, to discover the cause of a phenomenon, or to derive an empirical law from laws of causation, is to explain it; because a cause is an invariable antecedent, and therefore reminds us of, or enables us to conceive, an indefinite number of cases similar to the present one wherever the cause exists. It classifies the present case with other instances of causation, or brings it under the universal law; and, as we have seen that the discovery of the laws of nature is essentially the discovery of causes, the discovery and derivation of laws is scientific explanation. The discovery of quantitative laws is especially satisfactory, because it not only explains why an event happens at all, but why it happens just in this direction, degree, or amount; and not only is the given relation of cause and effec
PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  



Top keywords:

explanation

 
discovery
 
premise
 

reason

 

instances

 

relation

 

sufficient

 

assimilation

 

classification

 

present


causation

 
conclusion
 

command

 
phenomenon
 
referred
 

assimilated

 

phenomena

 

similar

 

swallow

 

empirical


derive

 

discover

 

Sciences

 

nations

 

reminds

 
enables
 

antecedent

 

invariable

 

eclipses

 
Concrete

explain

 

devour

 

assumed

 

theorems

 
axioms
 

definitions

 

repeats

 
conditions
 

demonstrated

 

explained


conceive
 

asserts

 

syllogism

 

dragon

 

supposing

 

explains

 

Chinaman

 

street

 

quantitative

 
satisfactory