FREE BOOKS

Author's List




PREV.   NEXT  
|<   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185  
186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   >>   >|  
ality of Cause and Effect; and this, in the above example, the Chemist determines by showing that, instead of the oxygen and wax that have disappeared during combustion, an equivalent weight of carbon dioxide, water, etc., has been formed. Here, then, we have all the marks of causation; but in the ordinary judgments of life, in history, politics, criticism, business, we must not expect such clear and direct proofs; in subsequent chapters it will appear how different kinds of evidence are combined in different departments of investigation. Sec. 7. The Inductive Canons, to be explained in the next chapter, describe the character of observations and experiments that justify us in drawing conclusions about causation; and, as we have mentioned, they are derived from the principle of Causation itself. According to that principle, cause and effect are invariably, immediately and unconditionally antecedent and consequent, and are equal as to the matter and energy embodied. Invariability can only be observed, in any of the methods of induction, by collecting more and more instances, or repeating experiments. Of course it can never be exhaustively observed. Immediacy, too, in direct Induction, is a matter for observation the most exact that is possible. Succession, or the relation itself of antecedent and consequent, must either be directly observed (or some index of it); or else ascertained by showing that energy gained by one phenomenon has been lost by another, for this implies succession. But to determine the unconditionality of causation, or the indispensability of some condition, is the great object of the methods, and for that purpose the meaning of unconditionality may be further explicated by the following rules for the determination of a Cause. A. QUALITATIVE DETERMINATION _I.--For Positive Instances._ To prove a supposed Cause: (a) Any agent whose introduction among certain conditions (without further change) is followed by a given phenomenon; or, (b) whose removal is followed by the cessation (or modification) of that phenomenon, is (so far) the cause or an indispensable condition of it. To find the Effect: (c) Any event that follows a given phenomenon, when there is no further change; or, (d) that does not occur when the conditions of a former occurrence are exactly the same, except for the absence of that phenomenon, is the effect of it (or is dependent on it). _II.--For Negative Instan
PREV.   NEXT  
|<   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185  
186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   >>   >|  



Top keywords:
phenomenon
 

causation

 
observed
 

effect

 

principle

 

direct

 
antecedent
 

experiments

 
unconditionality
 
condition

conditions

 

matter

 

methods

 

change

 

consequent

 
energy
 

Effect

 

showing

 

explicated

 

purpose


oxygen

 

meaning

 
Positive
 

Instances

 
DETERMINATION
 

QUALITATIVE

 
object
 

determination

 

ascertained

 
gained

combustion
 

relation

 

directly

 

determine

 

disappeared

 

indispensability

 

succession

 

implies

 

supposed

 

occurrence


Negative

 

Instan

 

dependent

 
absence
 
introduction
 

Chemist

 

Succession

 

determines

 

indispensable

 
modification