FREE BOOKS

Author's List




PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  
f the increment of _p_. For examples of the application of this method, the reader should refer to some work of exact science. He will find in Deschanel's _Natural Philosophy_, c. 32, an account of some experiments by which the connection between heat and mechanical work has been established. It is there shown that "whenever work is performed by the agency of heat" [as in driving an engine], "an amount of heat disappears equivalent to the work performed; and whenever mechanical work is spent in generating heat" [as in rubbing two sticks together], "the heat generated is equivalent to the work thus spent." And an experiment of Joule's is described, which consisted in fixing a rod with paddles in a vessel of water, and making it revolve and agitate the water by means of a string wound round the rod, passed over a pulley and attached to a weight that was allowed to fall. The descent of the weight was measured by a graduated rule, and the rise of the water's temperature by a thermometer. "It was found that the heat communicated to the water by the agitation amounted to one pound-degree Fahrenheit for every 772 foot-pounds of work" expended by the falling weight. As no other material change seems to take place during such an experiment, it shows that the progressive expenditure of mechanical energy is the cause of the progressive heating of the water. The thermometer itself illustrates this method. It has been found that the application of heat to mercury expands it according to a law; and hence the volume of the mercury, measured by a graduated index, is used to indicate the temperature of the air, water, animal body, etc., in which the thermometer is immersed, or with which it is brought into contact. In such cases, if no other change has taken place, the heat of the air, water, or body is the cause of the rise of the mercury in its tube. If some other substance (say spirit) be substituted for mercury in constructing a thermometer, it serves the same purpose, provided the index be graduated according to the law of the expansion of that substance by heat, as experimentally determined. Instances of phenomena that do not vary together indicate the exclusion of a supposed cause (by Prop. III (c)). The stature of the human race has been supposed to depend on temperature; but there is no correspondence. The "not varying together," however, must not be confused with "varying inversely," which when regular indicates a true c
PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  



Top keywords:
mercury
 

thermometer

 
temperature
 

weight

 

graduated

 

mechanical

 
substance
 

supposed

 
experiment
 
varying

change

 

progressive

 

measured

 

equivalent

 

performed

 
method
 

application

 

contact

 

spirit

 

examples


expands

 

science

 
illustrates
 

heating

 
volume
 

substituted

 
immersed
 

animal

 

reader

 
brought

correspondence
 

depend

 

regular

 

confused

 

inversely

 

stature

 

expansion

 

experimentally

 

determined

 

provided


purpose

 

serves

 

Instances

 
phenomena
 
increment
 

exclusion

 

constructing

 

string

 

agitate

 
agency