FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  
beautiful marble bell tower which leans over as if it were just about to fall to the ground. Yet it has stood in this position for hundreds of years and has never given a sign of toppling. The foundations on which it rested sank down into the ground on one side while the tower was being built (it took over 200 years to build it), and this made it tip. But the men who were building it evidently felt sure that it would not fall over in spite of its tipping. They knew the law of stability. [Illustration: FIG. 13. The Leaning Tower of Pisa.] All architects and engineers and builders have to take this law into consideration or the structures they put up would topple over. And your body learned the law when you were a little over a year old, or you never could have walked. It is worth while for your brain to know it, too, because it is a very practical law that you can use in your everyday life. If you wish to understand why the Leaning Tower of Pisa does not fall over, why it is hard to walk on stilts, why a boat tips when a person stands up in it, why blocks fall when you build too high with them, and how to keep things from tipping over, do the following experiment and read the explanation that follows it: EXPERIMENT 12.[2] Unscrew the bell from a doorbell or a telephone. You will not harm it at all, and you can put it back after the experiment. Cut a sheet of heavy wrapping paper or light-weight cardboard about 5 x 9 inches. Roll this so as to make a cylinder about 5 inches high and as big around as the bell. Hold it in shape by pasting it or putting a couple of rubber bands around it. Cut two strips of paper about an inch wide and 8 inches long; lay these crosswise; lay the bell, round side down, on the center of the cross. Push a paper fastener through the hole in the bell (the kind shown in Figure 14) and through the crossed pieces of paper, spreading the fastener out so as to fasten the paper cross to the rounded side of the bell. Bend the arms of the cross up around the bell and paste them to the sides of the paper cylinder so that the bell makes a curved bottom to the cylinder, as shown in Figure 15. [Illustration: FIG. 14.] [Footnote 2: TO THE TEACHER. If you have a laboratory, it is well to have this cylinder already made for the use of all classes.] [Illustration: FIG. 15. In this cylinder the center of weight is so high that it is n
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  



Top keywords:

cylinder

 

inches

 

Illustration

 
tipping
 

Leaning

 

fastener

 

weight

 

experiment

 

center

 
ground

Figure

 

laboratory

 

cardboard

 
TEACHER
 

Footnote

 

telephone

 

doorbell

 

Unscrew

 

classes

 

wrapping


crosswise

 

rounded

 
fasten
 

crossed

 

pieces

 

spreading

 

pasting

 
putting
 

curved

 
couple

strips
 

rubber

 
bottom
 

everyday

 
evidently
 

building

 

engineers

 

builders

 

architects

 

stability


position

 

hundreds

 

beautiful

 

marble

 

toppling

 

foundations

 

rested

 

consideration

 
structures
 

person