FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  
cules. Their experiments have been so careful and scientists have found out so much about what _seem_ to be molecules,--how large they are, what they probably weigh, how fast they move, and even what they are made of,--that almost no one has any doubt left that fast-moving molecules make up everything in the world. [Illustration: FIG. 41. A thermometer.] To go back, then: if we looked at a piece of iron under a microscope that would show us the molecules,--and remember, no such powerful microscope could exist,--we should see these quivering particles, and nothing more. Then if some one heated the iron while we watched the molecules, or if the sun shone on it, we should see the molecules move faster and faster and separate farther and farther. That is why heat expands things. When the molecules in an object move farther apart, naturally the object expands. _Heat is the motion of the molecules._ When the molecules move faster (that is, when the iron grows hotter), they separate farther and the iron swells. [Illustration: FIG. 42. A thermometer made of a flask of water. It does not show the exact degree of heat of the water, but it does show whether the water is hot or cold.] HOW WE CAN TELL THE TEMPERATURE BY READING A THERMOMETER. The mercury (quicksilver) in the bulb of the thermometer like everything else expands (swells) when it becomes warm. It is shut in tightly on all sides by the glass, except for the little opening into the tube above. When it expands it must have more room, and the only space into which it can move is up in the tube. So it rises in the tube. [Illustration: FIG. 43. Will the hot ball go through the ring?] Water will do the same thing. You can make a sort of thermometer, using water instead of mercury, and watch the water expand when you heat it. Here are the directions for doing this: [Illustration: FIG. 44. When the wire is cold, it is fairly tight.] EXPERIMENT 28. Fill a flask to the top with water. Put a piece of glass tubing through a stopper, letting the tube stick 8 or 10 inches above the top of the stopper. Put the stopper into the flask, keeping out all air; the water may rise 2 or 3 inches in the glass tube. Dry the flask on the outside and put it on a screen on the stove or ring stand, and heat it. Watch the water in the tube. What effect does heat have on the water? Here are two interesting experiments that show how solid things exp
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  



Top keywords:

molecules

 

farther

 

expands

 

thermometer

 

Illustration

 

stopper

 
faster
 

mercury

 

microscope


swells
 

things

 

separate

 

experiments

 

object

 
inches
 

tightly

 
opening
 

EXPERIMENT


keeping

 

screen

 
interesting
 

effect

 

expand

 

directions

 

tubing

 
letting
 

fairly


hotter

 

looked

 

moving

 

quivering

 

powerful

 

remember

 

scientists

 

careful

 
particles

degree

 
TEMPERATURE
 

quicksilver

 

READING

 

THERMOMETER

 
watched
 

heated

 

motion

 

naturally