FREE BOOKS

Author's List




PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  
of holes to the outer row and back again. Which row has the most holes in it? Which makes the highest sound? Hold your paper against the teeth at the edge of the disk. Is the pitch higher or lower than before? Blow through a blowpipe against the different rows of holes while the disk is being whirled. As the holes make the air vibrate do you get any sound? This experiment shows that by making the air vibrate you get a sound. The next experiment will show that when you have sound you are getting vibrations. EXPERIMENT 55. Tap a tuning fork against the desk, then hold the prongs lightly against your lips. Can you feel them vibrate? Tap it again, and hold the fork close to your ear. Can you hear the sound? [Illustration: FIG. 96. An interesting experiment in sound.] The experiment which follows will show that we usually must have air to do the vibrating to carry the sound. EXPERIMENT 56. Make a pad of not less than a dozen thicknesses of soft cloth so that you can stand an alarm clock on it on the plate of the air pump. The pad is to keep the vibrations of the alarm from making the plate vibrate. A still better way would be to set a tripod on the plate of the air pump and to suspend the alarm clock from the tripod by a rubber band. Set the alarm so that it will ring in 3 or 4 minutes, put it under the bell jar, and pump out the air. Before the alarm goes off, be sure that the air is almost completely pumped out of the jar. Can you hear the bell ring? Distinguish between a dull trilling sound caused by the jarring of the air pump when the alarm is on, and the actual _ringing_ sound of the bell. [Illustration: FIG. 97. When the air is pumped out of the jar, you cannot hear the bell ring.] The experiment just completed shows how we know there would be no sound on the moon, since there is practically no air around it. The next experiment will show you more about the way in which phonographs work. EXPERIMENT 57. Put a blank cylinder on the dictaphone, adjust the recording (cutting) needle and diaphragm at the end of the tube, start the motor, and talk into the dictaphone. Shut off the motor, remove the cutting needle, and put on the reproducing needle (the cutting needle, being sharp, would spoil the cylinder). Start the reproducing needle where the recording needle started, turn on the motor, and
PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  



Top keywords:

needle

 

experiment

 

vibrate

 

EXPERIMENT

 

cutting

 

vibrations

 
tripod
 

pumped


Illustration

 
reproducing
 

cylinder

 

recording

 

making

 

dictaphone

 
Distinguish
 

completely


Before
 

started

 

remove

 

minutes

 
jarring
 

practically

 

phonographs

 

completed


actual

 
ringing
 

caused

 

trilling

 

adjust

 

diaphragm

 

whirled

 

blowpipe


tuning

 

highest

 

higher

 
prongs
 

lightly

 
thicknesses
 

suspend

 

rubber


interesting

 
vibrating