FREE BOOKS

Author's List




PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  
some carbon granules between the mouthpiece disk and a disk behind it; and there are various other complications, such as the bell-ringing apparatus and the connections in the central office. But the principle of the telephone is almost exactly the same as the principle of the telegraph. Both depend entirely on the fact that an electric current passing around a piece of iron magnetizes the iron. EXPERIMENT 78. By means of your battery, make an electric bell ring. Examine the bell and trace the current through it. Notice how the current passes around two iron bars and magnetizes them, as it did in the telegraph instrument. Notice that the circuit is completed through a little metal attachment on the base of the clapper, and that when the clapper is pulled toward the electromagnet the circuit is broken. The iron bars are then no longer magnetized. Notice that a spring pulls the clapper back into place as soon as the iron stops attracting it. This completes the circuit again and the clapper is pulled down. That breaks the circuit and the clapper springs back. See how this constant making and breaking of the circuit causes the bell clapper to fly back and forth. [Illustration: FIG. 143. The bell is rung by electromagnets.] The electric bell, like the telephone and telegraph, works on the simple principle that electricity flowing through a wire that is wrapped around and around a piece of iron will turn that piece of iron into a magnet as long as the electricity flows. THE ELECTRIC MOTOR. The motor of a street car is a still more complicated carrying out of the same principle. In the next experiment you will see the working of a motor. EXPERIMENT 79. Connect the wires from the laboratory battery to the two binding posts of the toy motor, and make the motor run. Examine the motor and see that it is made of several electromagnets which keep attracting each other around and around. Motors, and therefore all things that are _moved_ by electricity, including trolley cars and electric railways, submarines while submerged, electric automobiles, electric sewing machines, electric vacuum cleaners, and electric player-pianos, are moved by magnetizing a piece of iron and letting this pull on another piece of iron. And the iron is magnetized by letting a current of electricity flow around and around it. [Illustration: FIG. 144. A toy electric m
PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  



Top keywords:

electric

 
clapper
 

circuit

 

electricity

 

principle

 

current

 

Notice

 

telegraph

 

battery

 

EXPERIMENT


Examine

 

magnetized

 

electromagnets

 

letting

 

Illustration

 

pulled

 

magnetizes

 

attracting

 

telephone

 

experiment


carrying

 

working

 

binding

 

laboratory

 

Connect

 

complicated

 

magnet

 

wrapped

 

ELECTRIC

 

street


mouthpiece

 

granules

 
sewing
 
machines
 

vacuum

 

automobiles

 

submerged

 

cleaners

 

player

 

magnetizing


pianos

 

submarines

 

railways

 

Motors

 

trolley

 

including

 

carbon

 

things

 

simple

 
attachment