FREE BOOKS

Author's List




PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  
hes, the fuses, all things along the circuit, are simply parts of the long loop from the dynamo, as shown in Figure 124. CONNECTING IN PARALLEL. The trouble with Figure 124 is that it is a little too simple. From looking at it you might think that the loop entered only one building. And it might seem that turning off one switch would shut off the electricity all along the line. It would, too, if the circuit were arranged exactly as shown above. To avoid this, and for other reasons, the main loop from the dynamo has branches so that the electricity can go through any or all of them at the same time and so that shutting off one branch will not affect the others. Electricians call this _connecting in parallel_; there are many parallel circuits from one power house. [Illustration: FIG. 124. Diagram of the complete circuit through the laboratory switches.] Figure 125 illustrates the principle just explained. As there diagrammed, the electricity passes out from the dynamo along the lower wire and goes down the left-hand wire of circuit _A_ through one of the electric lamps that is turned on, and then it goes back through the right-hand wire of the _A_ circuit to the upper wire of the main circuit and then on back to the dynamo. But only a part of the electricity goes through the _A_ circuit; part goes on to the _B_ circuit, and there it passes partly through the electric iron. Then it goes back through the other wire to the dynamo. No electricity can get through the electric lamp on the _B_ circuit, because the switch to the lamp is open. The switch on the _C_ circuit is open; so no electricity can pass through it. The purpose of the diagram is to show that electricity from the dynamo may go through several branch circuits and then get back to the dynamo, and that shutting off the electricity from one branch circuit does not shut it off from the others. And the purpose of this section is to make it clear that electricity can flow only through a complete circuit; it must have an unbroken path from the dynamo back to the dynamo again or from one pole of the battery back to the other pole. If the electricity does not have a complete circuit, it will not flow. _APPLICATION 52._ A small boy disconnected the doorbell batteries from the wires that ran to them, and when he wanted to put the wires back, he could not remember how they had been connected. He tried fastening both wires to the carbon part of
PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  



Top keywords:

circuit

 

electricity

 

dynamo

 
switch
 
complete
 

branch

 

electric

 

Figure

 
parallel
 

passes


purpose
 

shutting

 

circuits

 

simply

 

section

 

partly

 

unbroken

 

CONNECTING

 
diagram
 

things


remember

 

connected

 

carbon

 

fastening

 

wanted

 

APPLICATION

 

battery

 

disconnected

 

batteries

 

doorbell


building

 

Electricians

 
affect
 

turning

 

connecting

 

entered

 

reasons

 
branches
 
arranged
 

Illustration


simple

 
turned
 

PARALLEL

 

trouble

 
switches
 
laboratory
 

Diagram

 

illustrates

 

principle

 

diagrammed