FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
of the string to the nail. Set the pail on the floor. Pass the string through the handle of the pail and up over the spool (Fig. 33). Pull down on the loose end of the string. Is the pail easier to lift in this way or in the way you first tried? As you pull down with your hand, notice whether your hand moves farther than the pail, not so far as the pail, or the same distance. Is the greater amount of motion in your hand or in the pail? Then where would you expect the greater amount of force? [Illustration: FIG. 31. When the handle is turned the blades of the egg beater move much more rapidly than the hand. Will they pinch hard enough to hurt?] The whole idea of the lever can be summed up like this: one end of the contrivance _moves_ more than the other. But energy cannot be lost; so to make up for this extra _motion_ at one end more _force_ is always exerted at the other. This rule is true for all kinds of levers, blocks and tackles or pulley systems, automobile and bicycle gears, belt systems, cog systems, derricks, crowbars, and every kind of machine. In most machines you either put in more force than you get out and gain motion, or you put in more motion than you get out and gain force. In the following examples of the lever see if you can tell whether you are applying more force and obtaining more motion, or whether you are putting in more motion and obtaining more force: Cracking nuts with a nut cracker. Beating eggs with a Dover egg beater. Going up a hill in an automobile on low gear. Speeding on high gear. Cutting cloth with the points of shears. Cutting near the angle of the shears. Turning a door knob. Picking up sugar with sugar tongs. Pinching your finger in the crack of a door on the hinge side. [Illustration: FIG. 32. His hand goes down as far as the pail goes up.] _APPLICATION 16._ Suppose you wanted to lift a heavy frying pan off the stove. You have a cloth to keep it from burning your hand. Would it be easier to lift it by the end of the handle or by the part of the handle nearest the pan? _APPLICATION 17._ A boy was going to wheel his little sister in a wheelbarrow. She wanted to sit in the middle of the wheelbarrow; her brother thought she should sit as near the handles as possible so that she would be nearer his hands. Another boy thought she should sit as near the wheel as possible. Who was r
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

motion

 

handle

 

systems

 
string
 

Cutting

 

obtaining

 

automobile

 

wheelbarrow

 

thought

 
APPLICATION

wanted

 

shears

 

beater

 
greater
 

Illustration

 

easier

 

amount

 

frying

 

Suppose

 

points


distance

 

Picking

 
Turning
 

finger

 

Pinching

 

Speeding

 

brother

 
middle
 

handles

 
Another

nearer
 

sister

 
burning
 

notice

 
farther
 

nearest

 

turned

 

blades

 

exerted

 

levers


blocks

 

tackles

 

energy

 

rapidly

 

summed

 

contrivance

 

pulley

 

expect

 
applying
 

putting