FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
over it, and pump the air out of the jar. What makes the balloon expand? What is in it? Why could it not expand before you pumped the air out from around it? A toy balloon expands for the same reason when it goes high in the air. Up there the air pressure is not so strong outside the balloon, and so the gas inside makes the balloon expand until it bursts. [Illustration: FIG. 8. A siphon. The air pushes the water over the side of the pan.] EXPERIMENT 9. Lay a rubber tube flat in the bottom of a pan of water, so that the tube will be filled with water. Let one end stay under water, but pinch the other end tightly shut with your thumb and finger and lift it out of the pan. Lower this closed end into a sink or empty pan that is lower than the pan of water. Now stop pinching the tube shut. This device is called a _siphon_ (Fig. 8). EXPERIMENT 10. Put the mouth of a small syringe, or better, of a glass model lift pump, under water. Draw the handle up. Does the water follow the plunger up, stand still, or go down in the pump? When you pull up the plunger, you leave an empty space; you shove the air out of the pump or syringe ahead of the plunger. The air outside, pressing on the water, forces it up into this empty space from which the air has been pushed. But air pressure cannot force water up even into a perfect vacuum farther than about 33 feet. If your glass pump were, say, 40 feet long, the water would follow the plunger up for a little over 30 feet, but nothing could suck it higher; for by the time it reaches that height it is pushing down with its own weight as hard as the air is pressing on the water below. No suction pump, or siphon, however perfect, will ever lift water more than about 33 feet, and it will do well if it draws water up 28 or 30 feet. This is because a perfect vacuum cannot be made. There is always some water vapor formed by the water evaporating a little, and there is always a small amount of air that has been dissolved in water, both of which partly fill the space above the water and press down a little on the water within the pump. [Illustration: FIG. 9. A glass model suction pump.] If you had a straw over 33 feet long, and if some one held a glass of lemonade for you down near the sidewalk while you leaned over from the roof of a three-story building with your long straw, you could not possibly drink the lemonade. The air pressure w
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:

plunger

 

balloon

 

siphon

 
pressure
 

perfect

 

expand

 

vacuum

 

suction

 

lemonade


pressing
 

follow

 

syringe

 

Illustration

 
EXPERIMENT
 

weight

 

pumped

 

higher

 

expands


pushing

 

possibly

 

height

 

reaches

 
partly
 

leaned

 

sidewalk

 

dissolved

 

reason


building
 

evaporating

 
amount
 
formed
 

called

 
device
 

rubber

 
handle
 

pinching


finger

 

tightly

 

closed

 

bottom

 

filled

 

strong

 

pushed

 

farther

 

inside


pushes

 

bursts

 

forces