FREE BOOKS

Author's List




PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  
escapement wheel, a tooth of which should thus be enabled to leap upon the back of the pendulum, give it a short push, and then be locked until the pendulum had returned and again swung forward. An arrangement of this kind is shown in fig. 13. Let A be a block of metal fixed on the lower end of a pendulum rod. On the block let a small pall B be fastened, free to move round a centre C and resting against a stop D. Let E be a 4-leaved scape-wheel, the teeth of which as they come round rest against the bent pall GFL at G. The pall is prevented from flying too far back by a pin H, and kept up to position by a very delicate spring K. As soon as the pendulum rod, moving from left to right, has arrived at the position shown in the figure, the pall B will engage the arm FL, force it forwards, and by raising G will liberate the scape-wheel, a tooth of which, M, will thus close upon the heel N of the block A, and urge it forward. As soon, however, as N has arrived at G the tooth M will slip off the block A and rest on the pall G, and the impulse will cease. The pendulum is now perfectly free or "detached," and can swing on unimpeded as far as it chooses. On its return from right to left, the pall B slips over the pall L without disturbing it, and the pendulum is still free to make an excursion towards the left. On its return journey from left to right the process is again repeated. Such an escapement operates once every 2 seconds. One made on a somewhat similar plan was applied to a clock by Robert-Houdin, about 1830, and afterwards by Mr Haswell, and another by Sir George Airy. But the principle was already an old one, as may be seen from fig. 14, which was the work of an anonymous maker in the 18th century. A consideration of this escapement will show that it is only the application of the detached chronometer escapement to a clock. [Illustration: FIG. 12.--Strasser's Escapement (Strasser & Rohde).] [Illustration: FIG. 13.--Free Escapement.] [Illustration: FIG. 14.--Free Escapement (old form).] Even detached escapements, however, are not perfect. In order that an escapement should be perfect, the impulse given to the pendulum should be always exactly the same. It may be asked why, if the time of oscillation of the pendulum be independent of the amplitude of the arc of vibration, and hence of the impulse, it is necessary that the impulse should be un
PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  



Top keywords:

pendulum

 

escapement

 

impulse

 

detached

 

Escapement

 

Illustration

 
position
 
Strasser
 

perfect

 

return


arrived

 

forward

 

similar

 

locked

 

seconds

 

anonymous

 

principle

 

Haswell

 

Houdin

 
applied

George

 

century

 

Robert

 

application

 

oscillation

 

vibration

 

independent

 

amplitude

 
chronometer
 

escapements


enabled

 

consideration

 

journey

 

delicate

 

spring

 
engage
 

figure

 

moving

 

flying

 

centre


leaved

 
prevented
 

fastened

 

disturbing

 

chooses

 

returned

 
repeated
 

operates

 

process

 
resting