FREE BOOKS

Author's List




PREV.   NEXT  
|<   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189  
190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   >>   >|  
r shape of a tooth to act on a pinion with radial arms and centred at B. In designing a pair of wheels to transmit motion, which is to be multiplied say 6 times in the transmission (about the usual ratio for clock wheels), if we take two circles (called the "pitch circles") touching one another with radii as 1:6, then the circumference of the smaller will roll 6 times round that of the larger. The smaller wheel will have a number of teeth, say 8 to 16, each of them being sectors of the circle (fig. 24). If there are 16 teeth, then on the surface of the driving wheel there will be 96 teeth. Each of these teeth will be shaped as the curve of an epicycloid formed by the rolling on the big circle of a circle whose diameter is the radius of the pitch circle of the pinion. Points of the teeth so formed are cut off, so as to allow of the pinion having a solid core to support it, and gaps are made into the pitch circle to admit the rounded ends of the leaves of the pinon wheel. Thus a cog-wheel is shaped out. Clock wheels are made of hard hammered brass cut out by a wheel cutting machine. This machine consists of a vertical spindle on the top of which the wheel to be cut is fixed on a firmly resisting plate of metal of slightly smaller diameter, so as to allow the wheel to overlap. A cutter with the edges most delicately ground to the exact shape of the gap between two teeth is caused to rotate 3000 - 4000 times a minute, and brought down upon the edge of the wheel. The shavings that come off are like fine dust, but the cutter is pushed on so as to plunge right through the rim of the wheel in a direction parallel to the axis. In this way one gap is cut. The vertical spindle is now rotated one division, by means of a dividing plate, and another tooth is cut, and so the operation goes on round the wheel. It is not desirable in clocks that the pinion wheels which are driven should have too few teeth, for this throws all the work on a pair of surfaces before the centres and is apt to produce a grinding motion. Theoretically the more leaves a pinion has the better. Pinions can be made with leaves of thin steel watch-spring. In this case quite small pinions can have 20 leaves or more. The teeth in the driving wheels then become mere notches for which great accuracy of shape is not necessary. Such wheels are easy to make and run well. Lantern pinions are also excellent and are much used in American clocks. They are easy to make in
PREV.   NEXT  
|<   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189  
190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   >>   >|  



Top keywords:

wheels

 

circle

 

pinion

 

leaves

 

smaller

 

machine

 
driving
 
diameter
 

shaped

 

formed


vertical

 

pinions

 

spindle

 

motion

 

cutter

 

clocks

 

circles

 

operation

 

dividing

 
desirable

minute

 

brought

 

division

 

plunge

 

parallel

 

direction

 

rotated

 

shavings

 
pushed
 

notches


accuracy

 

American

 

excellent

 

Lantern

 

spring

 
surfaces
 

centres

 

throws

 

produce

 

Pinions


rotate

 
grinding
 

Theoretically

 

driven

 

number

 

larger

 
circumference
 

sectors

 

surface

 
touching