FREE BOOKS

Author's List




PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  
back to its old position by the spring F, thus driving the wheel A forward one division. G is a back-stop click, and H, I, fixed stops. It seems doubtful whether in large towns a number of dials could be electrically driven from a distance because of the large amount of power that would have to be transmitted. But for large buildings, such as hotels, they are excellent. One master-clock in the cellar will drive a hundred or so placed over the building. The master-clock may itself be driven by electricity, but it will require the services from time to time of some one to correct the time. Even this labour may be avoided if the master-clock is _synchronized_, and as synchronization requires but a small expenditure of force, it can be done over large areas. Hence the future of the clock seems to be a series of master-clocks, electrically driven, and synchronized one with another, in various parts of a city, from each of which a number of dials in the vicinity are driven. Electrical synchronization was worked out by Louis Breguet and others, and a successful system was perfected in England by J.A. Lund. The leading principle of the best systems is at each hour to cause a pair of fingers or some equivalent device to close upon the minute hand and put it exactly to the hour. Other systems are designed to retard or to accelerate the pendulum, but the former appears the more practical method. There is probably a future before synchronization which will enable the services of a clockmaker to be largely dispensed with and relegate his work merely to keeping the instruments in repair. _Miscellaneous Clocks._--Some small clocks are made to go for a year. They have a heavy balance wheel of brass weighing about 2 1b and about 2-1/2 in. in diameter, suspended from a point above its centre by a fine watch spring about 4 in. long. The crutch engages with the upper part of the spring, and as the balance wheel swings the pallets are actuated. The whole clock is but a large watch with a suspended balance wheel, oscillating once in about 8 seconds. Unless the suspension spring be compensated for temperature, such clocks gain very much in winter. An ingenious method of driving a clock by water has been proposed. As the pendulum oscillates to one side, an arm on it rises and at last lightly touches a drop of water hanging from a very fine nozzle; this drop is taken off and carried away by the arm, to be subsequently removed by adhesion
PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  



Top keywords:

spring

 

driven

 

master

 

clocks

 

balance

 

synchronization

 
services
 
suspended
 

synchronized

 

electrically


number

 

method

 

driving

 

future

 

systems

 

pendulum

 

enable

 

appears

 

practical

 
clockmaker

diameter

 

keeping

 

Miscellaneous

 

Clocks

 

instruments

 

repair

 

relegate

 

dispensed

 
weighing
 

largely


oscillates

 

ingenious

 

proposed

 

lightly

 

subsequently

 
removed
 

adhesion

 

carried

 

touches

 

hanging


nozzle

 
winter
 

swings

 

pallets

 

actuated

 

engages

 
centre
 

crutch

 

oscillating

 
compensated