FREE BOOKS

Author's List




PREV.   NEXT  
|<   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152  
153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   >>   >|  
with polygonal blocks of lava. CLOCK. The measurement of time has always been based on the revolution of the celestial bodies, and the period of the apparent revolution of the sun, i.e. the interval between two consecutive crossings of a meridian, has been the usual standard for a day. By the Egyptians the day was divided into 24 hours of equal length. The Greeks adopted a different system, dividing the day, i.e. the period from sunrise to sunset, into 12 hours, and also the night. Whence it followed that it was only at two periods in the year that the length of the hours during the day and night were uniform (see CALENDAR). In consequence, those who adopted the Greek system were obliged to furnish their water-clocks (see CLEPSYDRA) with a compensating device so that the equal hours measured by those clocks should be rendered unequal, according to the exigencies of the season. The hours were divided into minutes and seconds, a system derived from the sexagesimal notation which prevailed before the decimal system was finally adopted. Our mode of computing time, and our angular measure, are the only relics of this obsolete system. The simplest measure of time is the revolution of the earth round its axis, which so far as we know is uniform, perfectly regular, and has not varied in speed during any period of human observation. The time of such a revolution is called a sidereal day, and is divided into hours, minutes and seconds. The period of rotation of the earth is practically measured by observations of the fixed stars (see TIME), the period between two successive transits of the same star across a meridian constituting the sidereal day. But as the axis of the earth slowly revolves round in a cone, whereby the phenomenon known as the precession of the equinoxes is produced, it follows that the astronomical sidereal day is not the true period of the earth's rotation on its axis, but varies from it by less than a twenty millionth part, a fraction so small as to be inappreciable. But the civil day depends not on the revolution of the earth with regard to the stars, but on its revolution as compared with the position of the sun. Therefore each civil day is on the average longer than a sidereal one by nearly four minutes, or, to be exact, each sidereal day is to an average civil day as .99727 to 1, and the sidereal hour, minute and second are also shorter in like proportion. Hence a sidereal clock has a shorter, qui
PREV.   NEXT  
|<   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152  
153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   >>   >|  



Top keywords:
sidereal
 

period

 

revolution

 
system
 
divided
 
minutes
 

adopted

 

seconds

 

clocks

 

measured


uniform
 
meridian
 

shorter

 

rotation

 

length

 

average

 

measure

 

phenomenon

 

slowly

 

revolves


observation
 

successive

 

observations

 
transits
 

called

 
practically
 
constituting
 

longer

 

proportion

 

minute


Therefore

 

position

 
varies
 
astronomical
 

equinoxes

 
produced
 

twenty

 

millionth

 

depends

 

regard


compared

 

inappreciable

 
varied
 

fraction

 
precession
 
sexagesimal
 

dividing

 

sunrise

 
sunset
 

Greeks