FREE BOOKS

Author's List




PREV.   NEXT  
|<   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170  
171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>   >|  
xhausted, of course the pendulum would experience the minimum of resistance and would have to be lengthened a little. But in practice it is impossible to secure the maintenance of a good vacuum without sealing up the case in such a way as to render repairs very difficult, and this plan is therefore rarely resorted to. What is usually done is to put the clock in a metal case covered with a thick sheet of plate glass bedded in india-rubber strips, and held down by an iron flanged lid or frame firmly fixed by means of small bolts. An air-pump is attached to the case, a turn-off tap being inserted, and by a few strokes the pressure of the air inside the case can be lowered to (say) 29 in., or a little below the usual barometric height at the place where the clock is. The difference of pressure being small, the tendency of air from outside to leak in is also small, and if the workmanship is good the inside pressure will remain unaltered for many days. In any case the difference produced by leakage will be small, and will not greatly affect the going of the clock. With care, and a daily or weekly touch of the pump, the pressure inside can be kept practically constant, and hence the atmospheric error will be eliminated. The cover has also incidentally the effect of keeping damp and fumes from the clock and thus preserving it from rust, especially if a vessel with quicklime or some hygroscopic material be put in the case. Cases have considerable effect on the air, which moves with a pendulum and is flung off from it at each vibration; the going rate of a chronometer can be altered by removing the case. It is therefore desirable that cases enclosing pendulums should be roomy. Many people prefer to omit the air-tight case, and to keep a record of barometric, thermometric and hygrometric changes, applying corrections based on these to the times shown by the clock. Suspension of pendulums. It was formerly usual to suspend pendulums by means of a single spring about 1/2 in. wide riveted with chops of metal. The upper chop had a pin driven through it, which rested in grooves so as to allow the pendulum to hang vertically. The best modern pendulums are now made with two parallel springs put a little less than an inch apart. The edges of the chops where the springs enter are slightly rounded so as to avoid too sharp bending of the springs. Suspension of pe
PREV.   NEXT  
|<   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170  
171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>   >|  



Top keywords:
pressure
 

pendulums

 

pendulum

 
inside
 
springs
 
barometric
 

difference

 

Suspension

 

effect

 

vessel


material
 
quicklime
 

hygroscopic

 

prefer

 

preserving

 

people

 

enclosing

 

desirable

 

altered

 

record


chronometer
 

vibration

 

removing

 
considerable
 

parallel

 
modern
 
grooves
 

vertically

 

bending

 

rounded


slightly

 

rested

 
suspend
 
hygrometric
 

applying

 
corrections
 

single

 

spring

 

driven

 

riveted


thermometric

 

covered

 
rarely
 

resorted

 
bedded
 
flanged
 

firmly

 

rubber

 
strips
 

practice